版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度2.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.3.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm4.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是105.已知关于x的函数y=k(x+1)和y=﹣(k≠0)它们在同一坐标系中的大致图象是()A. B.C. D.6.在一个不透明的袋中装有个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在左右,则袋中红球大约有()A.个 B.个 C.个 D.个7.下列命题正确的是()A.有意义的取值范围是.B.一组数据的方差越大,这组数据波动性越大.C.若,则的补角为.D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为8.已知点P在半径为5cm的圆内,则点P到圆心的距离可以是A.4cm B.5cm C.6cm D.7cm9.如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为()A.65° B.50° C.30° D.25°10.有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15 B.n(n+1)=15C.n(n﹣1)=30 D.n(n+1)=30二、填空题(每小题3分,共24分)11.如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则cosα=_____.12.抛物线的顶点坐标是__________.13.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.14.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.15.二次函数的图象与y轴的交点坐标是__.16.二次函数向左、下各平移个单位,所得的函数解析式_______.17.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.18.若,则化简成最简二次根式为__________.三、解答题(共66分)19.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.20.(6分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?21.(6分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.22.(8分)如图,在平面直角坐标系中,的三个顶点分别为.(1)点关于原点对称点分别为点,,写出点,的坐标;(2)作出关于原点对称的图形;(3)线段与线段的数量关系是__________,线段与线段的关系是__________.23.(8分)解下列方程:(1)x2+2x﹣3=0;(2)x(x﹣4)=12﹣3x.24.(8分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.25.(10分)如图,正方形的边长为,,,,分别是,,,上的动点,且.(1)求证:四边形是正方形;(2)求四边形面积的最小值.26.(10分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.2、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.3、B【解析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.4、B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.5、A【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.【详解】解:当k>0时,反比例函数的系数﹣k<0,反比例函数过二、四象限,一次函数过一、二、三象限,原题没有满足的图形;当k<0时,反比例函数的系数﹣k>0,所以反比例函数过一、三象限,一次函数过二、三、四象限.故选:A.6、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】设袋中有红球x个,由题意得解得x=10,故选:A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.7、B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:A.有意义的取值范围是,故选项A命题错误;B.一组数据的方差越大,这组数据波动性越大,故选项B命题正确;C.若,则的补角为,故选项C命题错误;D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为,故选项D命题错误;故答案为B.【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.8、A【分析】直接根据点与圆的位置关系进行判断.【详解】点P在半径为5cm的圆内,点P到圆心的距离小于5cm,所以只有选项A符合,选项B、C、D都不符合;故选A.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.9、D【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、C【解析】由于每两个队之间只比赛一场,则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=15场,依此等量关系列出方程即可.【详解】试题解析:∵有支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为∴共比赛了15场,即故选C.二、填空题(每小题3分,共24分)11、【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求cosα的值.【详解】∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC−60=0,解得AC=5,AC=−12(舍去),∴BC==12,∴cosα==故填:.【点睛】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.12、(-1,-3)【分析】根据抛物线顶点式得顶点为可得答案.【详解】解:∵抛物线顶点式得顶点为,∴抛物线的顶点坐标是(-1,-3)故答案为(-1,-3).【点睛】本题考查了二次函数的顶点式的顶点坐标,熟记二次函数的顶点式及坐标是解题的关键.13、10.5【解析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.14、1:1.【解析】试题分析:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:1.考点:相似三角形的性质.15、(0,3)【分析】令x=0即可得到图像与y轴的交点坐标.【详解】当x=0时,y=3,∴图象与y轴的交点坐标是(0,3)故答案为:(0,3).【点睛】此题考查二次函数图像与坐标轴的交点坐标,图像与y轴交点的横坐标等于0,与x轴交点的纵坐标等于0,依此列方程求解即可.16、【分析】根据二次函数图象的平移规律即可得.【详解】二次函数向左平移2个单位所得的函数解析式为,再向下平移2个单位所得的函数解析式为,即,故答案为:.【点睛】本题考查了二次函数图象的平移规律,掌握理解二次函数图象的平移规律是解题关键.17、x<﹣2或0<x<2【解析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.18、【分析】根据二次根式的性质,进行化简,即可.【详解】===∵∴原式=,故答案是:.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质,是解题的关键.三、解答题(共66分)19、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴yE=yP,即点E、P关于对称轴对称∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.【点睛】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.20、一条直角边的长为6cm,则另一条直角边的长为8cm.【分析】可设较短的直角边为未知数x,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm,则另一条直角边的长为(x+2)cm.根据题意列方程,得.解方程,得:x1=6,x2=(不合题意,舍去).∴一条直角边的长为6cm,则另一条直角边的长为8cm.【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.21、(1)40;(2)180;(3).【解析】试题分析:(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.22、(1)点,,的坐标分别为,,;(2)作图见解析;(3),【分析】(1)分别作出点关于原点对称点,,,然后根据平面直角坐标系即可写出点,、的坐标;(2)连接、、即可;(3)根据对称的性质即可得出结论.【详解】解:(1)分别作点关于原点对称点,,,如下图所示,,,即为所求,由平面直角坐标系可知:点,,的坐标分别为,,;(2)连接、、,如图所示,即为所求;(3)由对称的性质可得到,.故答案为:;.【点睛】此题考查的是作已知图形关于原点对称的图形和对称的性质,掌握已知图形关于原点对称图形的作法和对称的性质是解决此题的关键.23、(1)x=﹣1或x=1;(2)x=4或x=﹣1.【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【详解】解:(1)∵x2+2x﹣1=0,∴(x+1)(x﹣1)=0,则x+1=0或x﹣1=0,解得x=﹣1或x=1;(2)∵x(x﹣4)+1(x﹣4)=0,∴(x﹣4)(x+1)=0,则x﹣4=0或x+1=0,解得x=4或x=﹣1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24、(2);(2)t=2或2;(3)().【分析】(2)由等边三角形OAB得出∠ABC=92°,进而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分类讨论:△PHQ∽△ABC和△QHP∽△ABC两种情况;(3)过点Q作QN∥OB交x轴于点N,得出△AQN为等边三角形,由OE∥QN,得出△POE∽△PNQ,以及,表示出OE的长,利用m=BE=OB﹣OE求出即可.【详解】(2)如图l,∵△AOB为等边三角形,∴∠BAC=∠AOB=62,∵BC⊥AB,∴∠ABC=92°,∴∠ACB=32°,∠OBC=32°,∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如图2,过点Q作x轴垂线,垂足为H,则QH=AQ•sin62°=.需要分类讨论:当△PHQ∽△ABC时,,即:,解得,t=2.同理,当△QHP∽△ABC时,t=2.综上所述,t=2或t=2;(3)如图2,过点Q作QN∥OB交x轴于点N,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小额汽车贷款合同范例
- 2024年企业租车合同协议样本
- 标准版市政道路工程合同
- 上门服务协议合同范本2024年
- 小型货车销售合同
- 网络广告合作协议
- 2024年度网络安全防护服务合同
- 办公租赁合同模板
- (2024版)人工智能医疗诊断系统开发合同
- 2024年度医疗器械独家代理合同
- 跨境数据流动的全球治理进展、趋势与中国路径
- 【多旋翼无人机的组装与调试5600字(论文)】
- 2023年辽阳市宏伟区事业单位考试真题
- 环境工程专业英语 课件
- 继电保护动作分析报告课件
- 五年级数学上册8解方程课件
- 教学工作中存在问题及整改措施
- 内部项目跟投协议书(正)
- 钢管静压桩质量监理细则
- 5000头奶牛养殖场新建项目环境评估报告书
- 16飞机颠簸教学课件
评论
0/150
提交评论