版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列的公差为,且.令,记分别为数列的前项和.(1)若,求的通项公式;(2)若为等差数列,且,求.2.(2022年高考全国乙卷数学(文)真题)记为等差数列的前n项和.若,则公差.3.(2023年高考全国甲卷数学(文)真题)记为等差数列的前项和.若,则(
)A.25 B.22 C.20 D.154.(2023年高考全国乙卷数学(理)真题)已知等差数列的公差为,集合,若,则(
)A.-1 B. C.0 D.5.(2024年高考全国甲卷数学(文)真题)已知等差数列的前项和为,若,则(
)A. B. C.1 D.6.(2024年高考全国甲卷数学(理)真题)记为等差数列的前项和,已知,,则(
)A. B. C. D.7.(2023年高考全国乙卷数学(文)真题)记为等差数列的前项和,已知.(1)求的通项公式;(2)求数列的前项和.8.(2024年新课标全国Ⅱ卷数学真题)记为等差数列的前n项和,若,,则.9.(2023年新课标全国Ⅰ卷数学真题)记为数列的前项和,设甲:为等差数列;乙:为等差数列,则(
)A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记为等比数列的前n项和,若,,则(
).A.120 B.85 C. D.11.(2023年高考全国甲卷数学(理)真题)设等比数列的各项均为正数,前n项和,若,,则(
)A. B. C.15 D.4012.(2023年天津高考数学真题)已知数列的前n项和为,若,则(
)A.16 B.32 C.54 D.16213.(2022年高考全国乙卷数学(理)真题)已知等比数列的前3项和为168,,则(
)A.14 B.12 C.6 D.314.(2023年高考全国甲卷数学(文)真题)记为等比数列的前项和.若,则的公比为.15.(2023年高考全国乙卷数学(理)真题)已知为等比数列,,,则.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为,且斛量器的高为,则斗量器的高为,升量器的高为.17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列,该数列的前3项成等差数列,后7项成等比数列,且,则;数列所有项的和为.18.(2022年新高考全国II卷数学真题)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则(
)A.0.75 B.0.8 C.0.85 D.0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则(
)A. B. C. D.考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记为数列的前n项和.已知.(1)证明:是等差数列;(2)若成等比数列,求的最小值.21.(2022年新高考北京数学高考真题)设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的(
)A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列的前项和为,且.(1)求的通项公式;(2)求数列的前n项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线,点在上,为常数,.按照如下方式依次构造点:过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.(1)若,求;(2)证明:数列是公比为的等比数列;(3)设为的面积,证明:对任意正整数,.24.(2022年新高考浙江数学高考真题)已知数列满足,则(
)A. B. C.D.25.(2023年北京高考数学真题)已知数列满足,则(
)A.当时,为递减数列,且存在常数,使得恒成立B.当时,为递增数列,且存在常数,使得恒成立C.当时,为递减数列,且存在常数,使得恒成立D.当时,为递增数列,且存在常数,使得恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列的首项,公差.记的前n项和为.(1)若,求;(2)若对于每个,存在实数,使成等比数列,求d的取值范围.27.(2022年新高考全国II卷数学真题)已知为等差数列,是公比为2的等比数列,且.(1)证明:;(2)求集合中元素个数.28.(2024年北京高考数学真题)设与是两个不同的无穷数列,且都不是常数列.记集合,给出下列4个结论:①若与均为等差数列,则M中最多有1个元素;②若与均为等比数列,则M中最多有2个元素;③若为等差数列,为等比数列,则M中最多有3个元素;④若为递增数列,为递减数列,则M中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;(2)若为连续可表数列,求证:k的最小值为4;(3)若为连续可表数列,且,求证:.30.(2024年上海夏季高考数学真题)无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.(1)写出所有的,,使数列是可分数列;(2)当时,证明:数列是可分数列;(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.32.(2023年北京高考数学真题)已知数列的项数均为m,且的前n项和分别为,并规定.对于,定义,其中,表示数集M中最大的数.(1)若,求的值;(2)若,且,求;(3)证明:存在,满足使得.33.(2024年北京高考数学真题)已知集合.给定数列,和序列,其中,对数列进行如下变换:将的第项均加1,其余项不变,得到的数列记作;将的第项均加1,其余项不变,得到数列记作;……;以此类推,得到,简记为.(1)给定数列和序列,写出;(2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由;(3)若数列的各项均为正整数,且为偶数,求证:“存在序列,使得的各项都相等”的充要条件为“”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记为数列的前项和,已知.(1)求的通项公式;(2)设,求数列的前项和.35.(2024年天津高考数学真题)已知数列是公比大于0的等比数列.其前项和为.若.(1)求数列前项和;(2)设,.(ⅰ)当时,求证:;(ⅱ)求.36.(2023年高考全国甲卷数学(理)真题)设为数列的前n项和,已知.(1)求的通项公式;(2)求数列的前n项和.37.(2022年新高考天津数学高考真题)设是等差数列,是等比数列,且.(1)求与的通项公式;(2)设的前n项和为,求证:;(3)求.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州市农村土地流转合同模板解读
- 水产类商品购销合同范本
- 小区物业委托管理协议
- 2024年农户和牛养殖合同范本
- 涉外科技咨询服务协议
- 专业培训就业安置书
- 环保设备养护承包合同
- 工程项目合作权益协议书
- 店铺租赁共用合同
- 海运货物保险合同的合同纠纷解决
- 云南劳技七年级上册家政教案
- 新思想的萌发人教版课件
- 2022年陕西省西安市雁塔区西安高新第一小学六上期中数学试卷
- ERAS在普外科的应用与实践
- 炼焦工序中煤调湿技术的发展与应用
- 医疗医学获奖品管圈汇报提高糖尿病患者胰岛素笔注射技能的正确率PPT模板课件(PPT 57页)
- CSTR相平面图的绘制大作业教学文案
- 大学英语口语FoodandDrink课件
- 高压辊磨机安装专项施工方案---实施性方案
- 恋爱与性心理(创意ppt)PPT通用课件
- 《汪国真诗歌》最全合集
评论
0/150
提交评论