2023届天津市河西区环湖中学数学九年级第一学期期末调研试题含解析_第1页
2023届天津市河西区环湖中学数学九年级第一学期期末调研试题含解析_第2页
2023届天津市河西区环湖中学数学九年级第一学期期末调研试题含解析_第3页
2023届天津市河西区环湖中学数学九年级第一学期期末调研试题含解析_第4页
2023届天津市河西区环湖中学数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形 B.圆 C.等边三角形 D.正五边形2.不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是()A.5 B.10 C.15 D.203.已知关于x的方程ax2+bx+c=0(a≠0),则下列判断中不正确的是()A.若方程有一根为1,则a+b+c=0B.若a,c异号,则方程必有解C.若b=0,则方程两根互为相反数D.若c=0,则方程有一根为04.下列事件中,随机事件是()A.任意画一个三角形,其内角和为180° B.经过有交通信号的路口,遇到红灯C.在只装了红球的袋子中摸到白球 D.太阳从东方升起5.抛物线经过平移得到抛物线,平移过程正确的是()A.先向下平移个单位,再向左平移个单位B.先向上平移个单位,再向右平移个单位C.先向下平移个单位,再向右平移个单位D.先向上平移个单位,再向左平移个单位.6.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=97.关于x的一元二次方程x2+bx-6=0的一个根为2,则b的值为()A.-2 B.2 C.-1 D.18.用一个圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的高为()A. B. C. D.9.如图,是的直径,是弦,点是劣弧(含端点)上任意一点,若,则的长不可能是()A.4 B.5 C.12 D.1310.如图,将图形用放大镜放大,应该属于().A.平移变换 B.相似变换 C.旋转变换 D.对称变换二、填空题(每小题3分,共24分)11.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.12.如图,在□ABCD中,AB=5,AD=6,AD、AB、BC分别与⊙O相切于E、F、G三点,过点C作⊙O的切线交AD于点N,切点为M.当CN⊥AD时,⊙O的半径为____.13.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_____cm.14.如图,在一个正方形围栏中均为地散步着许多米粒,正方形内有一个圆(正方形的内切圆)一只小鸡在围栏内啄食,则小鸡正在圆内区域啄食的概率为________.15.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________.①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________米.16.如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_.17.若关于x的函数与x轴仅有一个公共点,则实数k的值为.18.如图,点在函数的图象上,直线分别与轴、轴交于点,且点的横坐标为4,点的纵坐标为,则的面积是________.三、解答题(共66分)19.(10分)如图,直线y=k1x+b与双曲线y=交于点A(1,4),点B(3,m).(1)求k1与k2的值;(2)求△AOB的面积.20.(6分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形中,若,则称四边形为准平行四边形.(1)如图①,是上的四个点,,延长到,使.求证:四边形是准平行四边形;(2)如图②,准平行四边形内接于,,若的半径为,求的长;(3)如图③,在中,,若四边形是准平行四边形,且,请直接写出长的最大值.21.(6分)(1)已知如图1,在中,,,点在内部,点在外部,满足,且.求证:.(2)已知如图2,在等边内有一点,满足,,,求的度数.22.(8分)如图,已知是原点,两点的坐标分别为,.(1)以点为位似中心,在轴的左侧将扩大为原来的两倍(即新图与原图的相似比为),画出图形,并写出点的对应点的坐标;(2)如果内部一点的坐标为,写出点的对应点的坐标.23.(8分)如图,是内接三角形,点D是BC的中点,请仅用无刻度的直尺,分别按下列要求画图.(1)如图1,画出弦AE,使AE平分∠BAC;(2)如图2,∠BAF是的一个外角,画出∠BAF的平分线.24.(8分)在平面直角坐标系xOy中,△ABC的位置如图所示.

(1)分别写出△ABC各个顶点的坐标;

(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;

(3)求线段BC的长.25.(10分)如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.26.(10分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据中心对称图形和轴对称图形的概念对各项分析判断即可.【详解】平行四边形是中心对称图形,但不是轴对称图形,故A错误;圆既是轴对称图形又是中心对称图形,故B正确;等边三角形是轴对称图形,但不是中心对称图形,故C错误;正五边形是轴对称图形,但不是中心对称图形,故D错误.故答案为:B.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握其定义是解题的关键.2、A【分析】估计利用频率估计概率可估计摸到白球的概率为0.25,然后根据概率公式计算这个口袋中白球的数量.【详解】设白球有x个,根据题意得:,解得:x=5,

即白球有5个,

故选A.【点睛】考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.3、C【分析】将x=1代入方程即可判断A,利用根的判别式可判断B,将b=1代入方程,再用判别式判断C,将c=1代入方程,可判断D.【详解】A.若方程有一根为1,把x=1代入原方程,则,故A正确;B.若a、c异号,则△=,∴方程必有解,故B正确;C.若b=1,只有当△=时,方程两根互为相反数,故C错误;D.若c=1,则方程变为,必有一根为1.故选C.【点睛】本题考查一元二次方程的相关概念,熟练掌握一元二次方程的定义和解法是关键.4、B【分析】由题意根据随机事件就是可能发生也可能不发生的事件这一定义,依次对选项进行判断.【详解】解:A、任意画一个三角形,其内角和为180°,是必然事件,不符合题意;B、经过有交通信号的路口遇到红灯,是随机事件,符合题意;C、在只装了红球的袋子中摸到白球,是不可能事件,不符合题意;D、太阳从东方升起,是必然事件,不符合题意;故选:B.【点睛】本题主要考查必然事件、不可能事件、随机事件的概念,熟练掌握必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.5、D【分析】先利用顶点式得到抛物线的顶点坐标为,抛物线的顶点坐标为,然后利用点平移的规律确定抛物线的平移情况.【详解】解:抛物线的顶点坐标为,抛物线的顶点坐标为,而点先向上平移2个单位,再向左平移3个单位后可得点,抛物线先向上平移2个单位,再向左平移3个单位后可得抛物线.故选:.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=1∴(x﹣1)2=1.故选:C.【点睛】此题考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键.7、D【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8、B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【详解】解:设此圆锥的底面半径为r,由题意得:,解得r=2cm,故这个圆锥的高为:.故选:B.【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.9、A【分析】连接AC,如图,利用圆周角定理得到∠ACB=90°,利用勾股定理得到AC=5,则5≤AP≤1,然后对各选项进行判断.【详解】解:连接AC,如图,

∵AB是⊙O的直径,

∴∠ACB=90°,∴,∵点P是劣弧(含端点)上任意一点,∴AC≤AP≤AB,

即5≤AP≤1.

故选:A.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.二、填空题(每小题3分,共24分)11、k≥-1【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程,解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.12、2或1.5【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,

(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.13、2或1【分析】分两种情况:(1)容器内水的高度在球形容器的球心下面;(2)容器内水的高度在球形容器的球心上面;根据垂径定理和勾股定理计算即可求解.【详解】过O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,则OC3(cm).分两种情况讨论:(1)容器内水的高度在球形容器的球心下面时,如图①,延长OC交⊙O于D,容器内水的高度为CD=OD﹣CO=5﹣3=2(cm);(2)容器内水的高度在球形容器的球心是上面时,如图②,延长CO交⊙O于D,容器内水的高度为CD=OD+CO=5+3=1(cm).则容器内水的高度为2cm或1cm.故答案为:2或1.【点睛】本题考查了垂径定理以及勾股定理,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意分类思想的应用.14、【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可.【详解】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=π()2=,所以“小鸡正在圆圈内”啄食的概率为:故答案为:【点睛】本题考查几何概率,掌握正方形面积公式正确计算是解题关键.15、①;5.95.【解析】试题解析:小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长;∵CD∥AB,∴△ECD∽△EBA,∴,即,∴AB=5.95(m).考点:中心投影.16、.【分析】根据轴对称,可以求得使得的周长最小时点的坐标,然后求出点到直线的距离和的长度,即可求得的面积,本题得以解决.【详解】联立得,解得,或,∴点的坐标为,点的坐标为,∴,作点关于轴的对称点,连接与轴的交于,则此时的周长最小,点的坐标为,点的坐标为,设直线的函数解析式为,,得,∴直线的函数解析式为,当时,,即点的坐标为,将代入直线中,得,∵直线与轴的夹角是,∴点到直线的距离是:,∴的面积是:,故答案为.【点睛】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.17、0或-1.【解析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次函数,与x轴仅有一个公共点.当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即.综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1.18、【分析】作EC⊥x轴于C,EP⊥y轴于P,FD⊥x轴于D,FH⊥y轴于H,由题意可得点A,B的坐标分别为(4,0),B(0,),利用待定系数法求出直线AB的解析式,再联立反比例函数解析式求出点,F的坐标.由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【详解】解:如图,作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,

由题意可得点A,B的坐标分别为(4,0),B(0,),由点B的坐标为(0,),设直线AB的解析式为y=kx+,将点A的坐标代入得,0=4k+,解得k=-.∴直线AB的解析式为y=-x+.联立一次函数与反比例函数解析式得,,解得或,即点E的坐标为(1,2),点F的坐标为(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,

∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案为:.【点睛】本题为一次函数与反比例函数的综合题,考查了反比例函数k的几何意义、一次函数解析式的求法,两函数交点问题,掌握反比例函数图象上点的坐标特征、反比例函数的比例系数k的几何意义,利用转化法求面积是解决问题的关键.三、解答题(共66分)19、(1)k1与k2的值分别为﹣,4;(2)【分析】(1)先把A点坐标代入y=中可求出k2得到反比例函数解析式为y=,再利用反比例函数解析式确定B(3,),然后利用待定系数法求一次函数解析式得到k1的值;(2)设直线AB与x轴交于C点,如图,利用x轴上点的坐标特征求出C点坐标,然后根据三角形面积公式,利用S△AOB=S△AOC﹣S△BOC计算.【详解】解:(1)把A(1,4)代入y=得k2=1×4=4,∴反比例函数解析式为y=,把B(3,m)代入y=得3m=4,解得m=,则B(3,),把A(1,4),B(3,)代入y=k1x+b得,解得,∴一次函数解析式为y=﹣x+,∴k1与k2的值分别为﹣,4;(2)设直线AB与x轴交于C点,如图,当y=0时,﹣x+=0,解得x=4,则C(4,0),∴S△AOB=S△AOC﹣S△BOC=×4×4﹣×4×=.【点睛】本题考查了反比例函数与一次函数的综合,待定系数法求函数解析式,以及三角形的面积,熟练掌握待定系数法是解答本题的关键.20、(1)见解析;(2);(3)【分析】(1)先根据同弧所对的圆周角相等证明三角形ABC为等边三角形,得到∠ACB=60°,再求出∠APB=60°,根据AQ=AP判定△APQ为等边三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判断∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可证四边形是准平行四边形;(2)根据已知条件可判断∠ABC≠∠ADC,则可得∠BAD=∠BCD=90°,连接BD,则BD为直径为10,根据BC=CD得△BCD为等腰直角三角形,则∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函数求出BC的长,过B点作BE⊥AC,分别在直角三角形ABE和△BEC中,利用三角函数和勾股定理求出AE、CE的长,即可求出AC的长.(3)根据已知条件可得:∠ADC=∠ABC=60°,延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),连接BO交弧AE于D点,则此时BD的长度最大,根据已知条件求出BO、OD的长度,即可求解.【详解】(1)∵∴∠ABC=∠BAC=60°∴△ABC为等边三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ为等边三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四边形是准平行四边形(2)连接BD,过B点作BE⊥AC于E点∵准平行四边形内接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD为的直径∵的半径为5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四边形是准平行四边形,且∴∠ADC=∠ABC=60°延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,因为∠ACE=90°,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),此时,∠ADC=∠AEC=60°,连接BO交弧AE于D点,则此时BD的长度最大.在等边三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD长的最大值为2+【点睛】本题考查的是新概念及圆的相关知识,理解新概念的含义、掌握圆的性质是解答的关键,本题的难点在第(3)小问,考查的是与圆相关的最大值及最小值问题,把握其中的不变量作出圆是关键.21、(1)详见解析;(2)150°【分析】(1)先证∠ABD=∠CBE,根据SAS可证△ABD≌△CBE;(2)把线段PC以点C为中心顺时针旋转60°到线段CQ处,连结AQ.根据旋转性质得△PCQ是等边三角形,根据等边三角形性质证△BCP≌△ACQ(SAS),得BP=AQ=4,∠BPC=∠AQC,根据勾股定理逆定理可得∠AQP=90°,进一步推出∠BPC=∠AQC=∠AQP+∠PQC=90°+60°.【详解】(1)证明:∵∠ABC=90°,BD⊥BE∴∠ABC=∠DBE=90°即∠ABD+∠DBC=∠DBC+∠CBE∴∠ABD=∠CBE.又∵AB=CB,BD=BE∴△ABD≌△CBE(SAS).(2)如图,把线段PC以点C为中心顺时针旋转60°到线段CQ处,连结AQ.由旋转知识可得:∠PCQ=60°,CP=CQ=1,∴△PCQ是等边三角形,∴CP=CQ=PQ=1.又∵△ABC是等边三角形,∴∠ACB=60°=∠PCQ,BC=AC,∴∠BCP+∠PCA=∠PCA+∠ACQ,即∠BCP=∠ACQ.在△BCP与△ACQ中∴△BCP≌△ACQ(SAS)∴BP=AQ=4,∠BPC=∠AQC.又∵PA=5,∴.∴∠AQP=90°又∵△PCQ是等边三角形,∴∠PQC=60°∴∠BPC=∠AQC=∠AQP+∠PQC=90°+60°=150°∴∠BPC=150°.【点睛】考核知识点:等边三角形,全等三角形,旋转,勾股定理.根据旋转性质和全等三角形判定和性质求出边和角的关系是关键.22、(1)如图,即为所求,见解析;点的对应点的坐标为,点的对应点的坐标为;(2)点的对应点的坐标为.【分析】(1)延长BO,CO到B′、C′,使OB′、OC′的长度是OB、OC的2倍.顺次连接三点即可;

(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【详解】(1)如图,即为所求,点的对应点的坐标为,点的对应点的坐标为.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【点睛】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.23、(1)见解析;(2)见解析【分析】(1)连接OD,延长OD交于E,连接AE,根据垂径定理可得,根据圆周角定理可得∠BAE=∠CAE,即可得答案;(2)连接OD,延长OD交于E,连接AE,反向延长OD,交于H,作射线AH,由(1)可知∠BAE=∠CAE,由HE是直径可得∠EAH=∠BAE+∠BAH=90°,根据平角的定义可得∠CAE+∠FAH=90°,即可证明∠BAH=∠FAH,可得答案.【详解】(1)如图,连接OD,延长OD交于E,连接AE,∵OE为半径,D为BC中点,∴,∴∠BAE=∠CAE,∴AE为∠BAC的角平分线,弦即为所求.(2)如图,连接OD,延长OD交于E,连接AE,反向延长OD,交于H,作射线AH,∵HE是直径,点A在上,∴∠EAH=∠BAE+∠BAH=90°,∴∠CAE+∠FAH=90°,由(1)可知∠BAE=∠CAE,∴∠BAH=∠FAH,∴AH平分∠BAF,射线即为所求.【点睛】本题考查垂径定理及圆周角定理,平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧;直径所对的圆周角是直角(90°);熟练掌握相关定理是解题关键.24、(1)A(-4,3),C(-2,5),B(3,0);(2)点A′的坐标为:(-4,-3),B′的坐标为:(-3,0),点C′的坐标为:(2,-5);(3)5..【分析】(1)直接利用坐标系得出各点坐标即可;

(2)利用关于坐标轴对称点的性质分别得出答案;

(3)直接利用勾股定理得出答案.【详解】(1)A(-4,3),C(-2,5),B(3,0);(2)如图所示:点A′的坐标为:(-4,-3),B′的坐标为:(-3,0),点C′的坐标为:(2,-5);

(3)线段BC的长为:=5.【点睛】此题主要考查关于坐标轴对称点的性质,勾股定理,正确得出对应点位置是解题关键.25、(1)证明见解析;(2)1.【解析】试题分析:(1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED≌△CFD即可得出结论.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.试题解析:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论