版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适()选手甲乙丙丁方差1.52.63.53.68A.甲 B.乙 C.丙 D.丁2.如图,在中,,于点D,,,则AD的长是()A.1. B. C.2 D.43.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1 B.3 C.﹣1 D.﹣34.如图,双曲线的一个分支为()A.① B.② C.③ D.④5.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中()A.甲的结果正确 B.乙的结果正确C.甲、乙的结果都不正确,应是一直增大 D.甲、乙的结果都不正确,应是一直减小6.下列说法正确的是()A.一组对边相等且有一个角是直角的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等且互相垂直的四边形是正方形D.对角线平分一组对角的平行四边形是菱形7.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图是等宽的勒洛三角形和圆形滚木的截面图.图图有如下四个结论:①勒洛三角形是中心对称图形②图中,点到上任意一点的距离都相等③图中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①② B.②③ C.②④ D.③④8.某射击运动员在同一条件下的射击成绩记录如表:射击次数1002004001000“射中9环以上”的次数78158321801“射中9环以上”的频率0.780.790.80250.801根据表中数据,估计这位射击运动员射击一次时“射中9环以上”的概率为()A.0.78 B.0.79 C.0.85 D.0.809.如图,一边靠墙(墙有足够长),其它三边用12m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是()A.16m2 B.12m2 C.18m2 D.以上都不对10.若x=2是关于x的一元二次方程x2﹣2a=0的一个根,则a的值为()A.3 B.2 C.4 D.511.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5° C.30° D.35°12.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55° B.70° C.125° D.145°二、填空题(每题4分,共24分)13.已知m,n是方程的两个实数根,则.14.如图,在平面直角坐标系中,点的坐标分别为,以原点为位似中心,把线段放大,点的对应点的坐标为,则点的对应点的坐标为__________.15.如图,圆形纸片⊙O半径为5,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则4个小正方形的面积和为_______.16.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.17.共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为_____.18.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.三、解答题(共78分)19.(8分)已知抛物线y=ax2+bx+c经过(﹣1,0),(0,﹣3),(2,3)三点.(1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标.20.(8分)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.21.(8分)在中,,记,点为射线上的动点,连接,将射线绕点顺时针旋转角后得到射线,过点作的垂线,与射线交于点,点关于点的对称点为,连接.(1)当为等边三角形时,①依题意补全图1;②的长为________;(2)如图2,当,且时,求证:;(3)设,当时,直接写出的长.(用含的代数式表示)22.(10分)如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.23.(10分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,若AD=4,则四边形BEGF的面积为_____.24.(10分)已知在中,,,,为边上的一点.过点作射线,分别交边、于点、.(1)当为的中点,且、时,如图1,_______:(2)若为的中点,将绕点旋转到图2位置时,_______;(3)若改变点到图3的位置,且时,求的值.25.(12分)在2019年国庆期间,王叔叔的服装店进回一种女装,进价为400元,他首先在进价的基础上增加100元,由于销量非常好,他又连续两次涨价,结果标价比进价的2倍还多45元,求王叔叔这两次涨价的平均增长率是百分之多少?26.如图,∠1=∠3,∠B=∠D,AB=DE=5,BC=1.(1)请证明△ABC∽△ADE.(2)求AD的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据方差的意义即可得.【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A.【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.2、D【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根据同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可证得△ACD∽△CBD,然后利用相似三角形的对应边成比例,即可求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD∽△CBD.3、C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.【详解】解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4、D【解析】∵在中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当=2时,=4,排除③;所以应该是④.故选D.5、B【分析】设PD=x,AB边上的高为h,求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:在中,∵,∴,设,边上的高为,则.∵,∴,∴,∴,∴,∴当时,的值随的增大而减小,当时,的值随的增大而增大,∴乙的结果正确.故选B.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.6、D【分析】根据矩形、正方形、菱形的判定方法一一判断即可;【详解】A、一组对边相等且有一个角是直角的四边形不一定是矩形,故本选项不符合题意;B、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意;C、对角线相等且互相垂直的四边形不一定是正方形,故本选项不符合题意;D、对角线平分一组对角的平行四边形是菱形,正确.故选:D.【点睛】本题考查矩形、正方形、菱形的判定方法,属于中考常考题型.7、B【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图中,点到上任意一点的距离都相等,故②正确;③图中,设圆的半径为r∴勒洛三角形的周长=圆的周长为∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.8、D【分析】根据大量的实验结果稳定在0.8左右即可得出结论.【详解】∵从频率的波动情况可以发现频率稳定在0.1附近,∴这名运动员射击一次时“射中9环以上”的概率是0.1.故选:D.【点睛】本题考查利用频率估计概率,在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近.n越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率.9、C【分析】设AB边为x,则BC边为(12-2x),根据矩形的面积可列二次函数,再求出最大值即可.【详解】设AB边为x,则BC边为(12-2x),则矩形ABCD的面积y=x(12-2x)=-2(x-3)2+18,∴当x=3时,面积最大为18,选C.【点睛】此题主要考察二次函数的应用,正确列出函数是解题的关键.10、A【分析】把x=2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.【详解】∵x=2是关于x的一元二次方程x2﹣2a=0的一个根,∴22×﹣2a=0,解得a=1.即a的值是1.故选:A.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.11、D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.12、C【解析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋转角等于125°.故选C.二、填空题(每题4分,共24分)13、3【解析】根据题意得m+n=−2,mn=−5,所以m+n−mn=2−(-5)=3.14、【分析】由题意可知:OA=2,AB=1,,△OAB∽△,根据相似三角形的性质列出比例式即可求出,从而求出点的坐标.【详解】由题意可知:OA=2,AB=1,,△OAB∽△∴即解得:∴点的坐标为(4,2)故答案为:.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的对应边成比例是解决此题的关键.15、16【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为5,根据垂径定理得:∴OD=CD==5,设小正方形的边长为x,则AB=,则在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四个小正方形的面积和=.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.16、30°【解析】试题解析:∵关于x的方程有两个相等的实数根,∴解得:∴锐角α的度数为30°;故答案为30°.17、2.4×1【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将240000用科学记数法表示为:2.4×1.故答案为2.4×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18、22.5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴,∴,依题意CD=20米,AB=50米,∴,解得:x=22.5(米).答:河的宽度为22.5米.三、解答题(共78分)19、(1)y=2x2﹣x﹣1;(2)抛物线的开口向上,对称轴为x=,顶点坐标为(,﹣).【分析】(1)将三点代入y=ax2+bx+c,得到三元一次方程组,解方程组即可得到a,b,c的值,从而得到抛物线的解析式.(2)把解析式化成顶点式,根据抛物线的性质即可得出结论.【详解】解:(1)把(-1,0),(0,-1),(2,1)代入y=ax2+bx+c,得,解得.所以,这个抛物线的表达式为y=2x2﹣x﹣1.(2)y=2x2﹣x﹣1=2(x﹣)2﹣,所以,抛物线的开口向上,对称轴为x=,顶点坐标为(,﹣)【点睛】本题主要考查了待定系数法求二次函数解析式及二次函数的性质.熟练掌握待定系数法是解题的关键.20、(1)CB=2,AP=2;(2)证明见解析;(3)DE=.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得,再利用比例性质可计算出DE=.【详解】解:(1)∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)∵AP=BP,∴OP为△ABC的中位线,∴OP=BC=1,∴,而,∴,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴,即,∴DE=.21、(1)①见解析,②.(2)见解析;(3).【分析】(1)①根据题意补全图形即可;②根据旋转的性质和对称的性质易证得,利用特殊角的三角函数值即可求得答案;(2)作于,于,证得四边形是矩形,求得,再证得,求得,再求得,即可证得结论.(3)设则,证得,求得,再作DM⊥AB,PN⊥DQ,利用面积法求得,继而求得,再证得,求得,根据得,即可求得答案.【详解】(1)解:①补全图形如图所示:②∵为等边三角形,∴,,根据旋转的性质和对称的性质知:,,∴,,在和中,,∴,∴,∵为等边三角形,,∴,在中,,∴,∴.(2)作于,于,∵,∴,由题意可知,∴,∴,∴,∴,∵,∴,∴四边形是矩形,∴,∵,∴,∴,又∵,∴,∴,∴,∵,关于点对称,∴,,∴,∴为中点,∴垂直平分,∴;(3)∵,AC⊥BD,∴,设则,∵AC⊥BD,AP⊥AD,∴∠ACB=∠PAD,又∵∠ABC=∠PDA,∴,∴,∴,∴,作DM⊥AB,PN⊥DQ,∵,∴,∵,∴,∴,∵,又∵∠AB=∠PDA,∴,∴,∴,∴,∵,∴,解得:,∴.【点睛】本题是三角形综合题,主要考查了三角形的旋转,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,构造出全等三角形、相似三角形、直角三角形是解本题的关键.22、(1)详见解析;(2)①1;②﹣1.【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF=90°,∠DPF=∠OPF,∴∠OPF=90°,∴∠DPA+∠QPB=90°,∵∠DPA+∠PDA=90°,∴∠PDA=∠QPB,∵点Q落在BC上,∴∠DAP=∠B=90°,∴△DAP∽△PBQ,∴,∵DA=AB=4,AP=2t,∠DAP=90°,∴DP==2,PB=4﹣2t,设PQ=a,则PE=a,DE=DP﹣a=2﹣a,∵△AEP∽△CED,∴,即,解得,a=,∴PQ=,∴,解得,t1=﹣﹣1(舍去),t2=﹣1,即t的值是﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.23、【分析】设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,由勾股定理得出,解得a=,证明△EDG∽△GCF,得出比例线段,求出CF.则可求出EF.由四边形面积公式可求出答案.【详解】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,∵∠C=90°,∴Rt△BCG中,,∴,∴a=,∴DG=CG=,∴BG=OB+OG=2=3,由折叠可得∠EGD=∠EGO,∠OGF=∠FGC,∴∠EGF=90°,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小区社区文化建设指导手册
- 债权转让房屋买卖合同(2篇)
- 娱乐行业市场营销策划手册
- 腹泻门诊工作制度
- 外国代表团合作协议书范文
- 养猪场合伙养殖协议书范文范本
- 社区理发店转让协议书范文范本
- 烧烤炉商标转让协议书范文模板
- 风电机组安装施工方案
- 洗沙场吨洗沙废水处理项目设计方案
- 降低手术病人呼吸功能锻炼的不规范率 肝胆外科一等奖品管圈果汇报护理课件
- 关于人员调整的报告
- 2024考研英语二试题及答案解析(word版)
- 青马工程培训班试题库附有答案
- 《噪声污染控制》课件
- 酒店餐饮管理职业生涯规划与管理
- 高铁血红蛋白症的诊断与治疗方法
- 机械制图直线的投影公开课课件1
- 商业秘密保护意识培训
- 专题03 中点弦问题(点差法)(教师版)2024高考数学复习满分突破
- 家务员培训课件
评论
0/150
提交评论