版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若反比例函数y=的图象经过点(2,﹣6),则k的值为()A.﹣12 B.12 C.﹣3 D.32.如图,以△ABC的三条边为边,分别向外作正方形,连接EF,GH,DJ,如果△ABC的面积为8,则图中阴影部分的面积为()A.28 B.24 C.20 D.163.如图,菱形在第一象限内,,反比例函数的图象经过点,交边于点,若的面积为,则的值为()A. B. C. D.44.(湖南省娄底市九年级中考一模数学试卷)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.995.下列说法正确的是().A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等6.在下列图案中,是中心对称图形的是()A. B. C. D.7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应(
)A.不小于4.8Ω B.不大于4.8Ω C.不小于14Ω D.不大于14Ω8.若均为锐角,且,则().A. B.C. D.9.如图,是等边三角形,且与轴重合,点是反比例函数的图象上的点,则的周长为()A. B. C. D.10.二次函数的图象如右图所示,若,,则()A., B., C., D.,二、填空题(每小题3分,共24分)11.如图,一块含30°的直角三角板ABC(∠BAC=30°)的斜边AB与量角器的直径重合,与点D对应的刻度读数是54°,则∠BCD的度数为_____度.12.若,则锐角α=_____.13.如图,已知点P是△ABC的重心,过P作AB的平行线DE,分别交AC于点D,交BC于点E,作DF//BC,交AB于点F,若四边形BEDF的面积为4,则△ABC的面积为__________14.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD=______度.15.如图,,如果,那么_________________.16.△ABC中,∠C=90°,tanA=,则sinA+cosA=_____.17.如图,点,,,在上,,,,则________.18.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于__________.三、解答题(共66分)19.(10分)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为;c的值为;点A的坐标为;(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标.20.(6分)已知二次函数.(1)求证:不论m取何值,该函数图像与x轴一定有两个交点;(2)若该函数图像与x轴的两个交点为A、B,与y轴交于点C,且点A坐标(2,0),求△ABC面积.21.(6分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.22.(8分)如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OACD,求阴影部分的面积;(2)求证:DEDM.23.(8分)如图1,△ABC中,AB=AC=4,∠BAC=,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.24.(8分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.25.(10分)如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)若要围建的菜园为100m2时,求该莱园的长.(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?26.(10分)车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:∵反比例函数的图象经过点(2,﹣6),∴,解得k=﹣1.故选A.考点:反比例函数图象上点的坐标特征.2、B【分析】过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,根据全等三角形的性质得到EM=CN,于是得到S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,于是得到结论.【详解】解:过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,∴∠M=∠N=90°,∠EAM+∠MAC=∠MAC+∠CAB=90°,∴∠EAM=∠CAB∵四边形ACDE、四边形ABGF是正方形,∴AC=AE,AF=AB,∴∠EAM≌△CAN,∴EM=CN,∵AF=AB,∴S△AEF=AF•EM,S△ABC=AB•CN=8,∴S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,∴图中阴影部分的面积=3×8=24,故选:B.【点睛】本题主要考查了正方形的性质,全等三角形判定和性质,正确的作辅助线是解题的关键.3、C【分析】过A作AE⊥x轴于E,设OE=,则AE=,OA=,即菱形边长为,再根据△AOD的面积等于菱形面积的一半建立方程可求出,利用点A的横纵坐标之积等于k即可求解.【详解】如图,过A作AE⊥x轴于E,设OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形边长为由图可知S菱形AOCB=2S△AOD∴,即∴∴故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A点坐标是解决本题的关键.4、B【解析】现将数字“69”旋转180°,得到的数字是:69,故选B.5、D【解析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】A.
是随机事件,错误;
B.
中奖的概率是1%,买100张该种彩票不一定会中奖,错误;
C.
明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;
D.
正确。
故选D.【点睛】本题考查概率的意义,解题的关键是掌握概率的意义.6、C【分析】根据中心对称图形的定义进行分析即可.【详解】A、不是中心对称图形.故A选项错误;B、不是中心对称图形.故B选项错误;C、是中心对称图形.故C选项正确;D、不是中心对称图形.故D选项错误.故选C.【点睛】考点:中心对称图形.7、A【分析】先由图象过点(1,6),求出U的值.再由蓄电池为电源的用电器限制电流不得超过10A,求出用电器的可变电阻的取值范围.【详解】解:由物理知识可知:I=UR,其中过点(1,6),故U=41,当I≤10时,由R≥4.1故选A.【点睛】本题考查反比例函数的图象特点:反比例函数y=kx的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<08、D【解析】根据三角函数的特殊值解答即可.【详解】解:∵∠B,∠A均为锐角,且sinA=,cosB=,
∴∠A=30°,∠B=60°.
故选D.【点睛】本题考查特殊角的三角函数值.9、A【分析】设△OAB的边长为2a,根据等边三角形的性质,可得点B的坐标为(-a,a),代入反比例函数解析式可得出a的值,继而得出△OAB的周长.【详解】解:如图,设△OAB的边长为2a,过B点作BM⊥x轴于点M.
又∵△OAB是等边三角形,
∴OM=OA=a,BM=a,
∴点B的坐标为(-a,a),
∵点B是反比例函数y=−图象上的点,
∴-a•a=-8,
解得a=±2(负值舍去),
∴△OAB的周长为:3×2a=6a=12.
故选:A.【点睛】此题考查反比例函数图象上点的坐标特征,等边三角形的性质,设△OAB的边长为2a,用含a的代数式表示出点B的坐标是解题的关键.10、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,
∴25a-20a+4c>0,即5a+4c>0,
∴M>0,
∵当x=1时,y=a+b+c>0,
∴N>0,
故选:A.【点睛】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.二、填空题(每小题3分,共24分)11、1.【分析】先利用圆周角定理的推论判断点C、D在同一个圆上,再根据圆周角定理得到∠ACD=27°,然后利用互余计算∠BCD的度数.【详解】解:∵∠C=90°,∴点C在量角器所在的圆上∵点D对应的刻度读数是54°,即∠AOD=54°,∴∠ACD=∠AOD=27°,∴∠BCD=90°﹣27°=1°.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12、45°【分析】首先求得cosα的值,即可求得锐角α的度数.【详解】解:∵,∴cosα=,∴α=45°.故答案是:45°.【点睛】本题考查了特殊的三角函数值,属于简单题,熟悉三角函数的概念是解题关键.13、9【分析】连接CP交AB于点H,利用点P是重心得到=,得出S△DEC=4S△AFD,再由DE//BF证出,由此得到S△DEC=S△ABC,继而得出S四边形BEDF=S△ABC,从而求出△ABC的面积.【详解】如图,连接CP交AB于点H,∵点P是△ABC的重心,∴,∴,∵DF//BE,∴△AFD∽△DEC,∴S△DEC=4S△AFD,∵DE//BF,∴,△DEC∽△ABC,∴S△ABC=S△DEC,∴S四边形BEDF=S△ABC,∵四边形BEDF的面积为4,∴S△ABC=9故答案为:9.【点睛】此题考察相似三角形的判定及性质,做题中首先明确重心的意义,连接CP交AB于点H是解题的关键,由此得到边的比例关系,再利用相似三角形的性质:面积的比等于相似比的平方推导出几部分图形的面积之间的关系,得到三角形ABC的面积.14、80【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】解:∵BC是⊙O的切线,
∴∠ABC=90°,
∴∠A=90°-∠ACB=40°,
由圆周角定理得,∠BOD=2∠A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.15、【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵,∴,即,解得:.故答案为:.【点睛】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.16、【解析】∵在△ABC中,∠C=90°,,∴可设BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sinA=,cosA=,∴sinA+cosA=.故答案为.17、70°【分析】根据=,得到,根据同弧所对的圆周角相等即可得到,根据三角形的内角和即可求出.【详解】∵=,∴,∴,∵,∴.故答案为【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.18、或【解析】将情况分为腰比底边长和腰比底边短两种情况来讨论,根据题意求出底边的长进而求出余弦值即可.【详解】当腰比底边长长时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为2,所以这个等边三角形底角的余弦值为;当腰比底边长短时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为8,所以这个等边三角形底角的余弦值为.【点睛】本题主要考查对新定义的理解能力、角的余弦的意义,熟练掌握角的余弦的意义是解答本题的关键.三、解答题(共66分)19、(1)﹣;﹣1;(﹣1,0);(1)①MD=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).【分析】(1)直线yx﹣1与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣1),即可求解;(1)①MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m),即可求解;②分∠CDM=90、∠MDC=90°、∠MCD=90°三种情况,分别求解即可.【详解】(1)直线yx﹣1与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣1).将点B、C的坐标代入抛物线表达式并解得:b,c=﹣1.故抛物线的表达式为:…①,点A(﹣1,0).故答案为:,﹣1,(﹣1,0);(1)①如图1,过点D作y轴的平行线交BC于点H交x轴于点E.设点D(m,m1m﹣1),点H(m,m﹣1).∵∠MDH+∠MHD=90°,∠OBC+∠BHE=90°,∠MHD=∠EHB,∴∠MDH=∠OBC=α.∵OC=1,OB=4,∴BC=,∴cos∠OBC=,则cos;MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m).∵0,故DM有最大值;②设点M、D的坐标分别为:(s,s﹣1),(m,n),nm1m﹣1;分三种情况讨论:(Ⅰ)当∠CDM=90°时,如图1,过点M作x轴的平行线交过点D与x轴的垂线于点F,交y轴于点E.易证△MEC≌△DFM,∴ME=FD,MF=CE,即s﹣1﹣1=m﹣s,ss﹣1﹣n,解得:s,或s=8(舍去).故点M(,);(Ⅱ)当∠MDC=90°时,如图3,过D作直线DE⊥y轴于E,MF⊥DE于F.同理可得:s,或s=0(舍去).故点M(,);(Ⅲ)当∠MCD=90°时,则直线CD的表达式为:y=﹣1x﹣1…②,解方程组:得:(舍去)或,故点D(﹣1,0),不在线段BC的下方,舍去.综上所述:点M坐标为:(,)或(,).【点睛】本题是二次函数的综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.20、(1)见解析;(2)10【分析】(1)令y=0得到关于x的二元一次方程,然后证明△=b2−4ac>0即可;(2)令y=0求出抛物线与x轴的交点坐标,根据坐标的特点即可解题.【详解】(1)因为=,且,所以.所以该函数的图像与x轴一定有两个交点.(2)将A(-1,0)代入函数关系式,得,,解得m=3,求得点B、C坐标分别为(4,0)、(0,-4).所以△ABC面积=[4-(-1)]×4×0.5=10【点睛】本题主要考查的是抛物线与x轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,求出抛物线与x轴的交点坐标是解答问题(2)的关键.21、(1);(2)【分析】(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为.故答案为;(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:第1部第2部ABCDABACADABABCBDBCACBCDCDADBDCD由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,∴P(M)=.方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,∴P(M)=.故答案为:.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)4-π;(2)参见解析.【解析】试题分析:(1)连接OD,由已知条件可证出三角形ODC是等腰直角三角形,OD的长度知道,∠DOB的度数是45度,这样,阴影的面积就等于等腰直角三角形ODC的面积减去扇形ODB的面积.(2)连接AD,由已知条件可证出AD垂直平分BM,从而得到DM=DB,又因为弧DE=弧DB,DE=DB,所以DE就等于DM了.试题解析:(1)连接OD,∵CD是⊙O切线,∴OD⊥CD∵OA="CD"=,OA=OD∴OD=CD=∴△OCD为等腰直角三角形∠DOC=∠C=45°S阴影=S△OCD-S扇OBD=××-.(2)连接AD.∵AB是⊙O直径∴∠ADB=∠ADM=90°又∵弧ED=弧BD∴ED="BD"∠MAD=∠BAD∴△AMD≌△ABD∴DM="BD"∴DE=DM.如图所示:考点:圆的性质与三角形综合知识.23、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得,,再根据三角形内角和性质,得;结合AB=AC=1,D是BC的中点,推导得,即可完成解题;(2)由(1)可知:EB=EF=EC,得到B,F,C三点共圆,点E为圆心,得∠BCF=∠BEF=10°,从而计算得,完成求解;(3)由(1)和(2)知,CF∥AB,因此得点F的运动路径在CF上;故当点E与点A重合时,AF最小,从而完成求解.【详解】(1)∵将线段EB绕点E逆时针旋转80°,点B的对应点是点F∴,∴,即∵AB=AC=1,D是BC的中点∴,∴,∴,∴∴∴(2)如图,连接BE、EC、BF、EF由(1)可知:EB=EF=EC∴B,F,C三点共圆,点E为圆心∴∠BCF=∠BEF=10°∵,∴∴∴,(1)中的结论仍然成立(3)由(1)和(2)知,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据技术应用与发展报告书
- 辅导员个人工作总结
- 大众传媒信息传播效果评估方法
- 外卖配送员工作手册
- 人工挖孔灌注桩施工方案
- 三人直播带货协议书范文模板
- 安全生产法律法规和标准规范管理制度
- 水下抛石护脚施工方案
- 餐饮基本奖罚制度
- 医疗纠纷调解室工作制度
- 小学三年级(12)班家长会课件
- 等离子喷涂原理与应用
- 2020新外研版新教材高二英语选择性必修四课文及翻译(中英文Word)
- 化工仪表及自动化ppt完整版(第三版-厉玉鸣)课件
- 腹腔穿刺术教案
- 肾性贫血诊断与治疗中国专家共识(2014 修订版)
- SHT350J306机器单试记录机泵、完整填写版
- 人教版小学1-6年级日积月累(全)
- 公对公欠款协议书范文
- 对甲苯磺酸检测标准2
- 2015年日历(含阴历带周数)a4
评论
0/150
提交评论