2023届辽宁省沈阳126中学九年级数学第一学期期末检测模拟试题含解析_第1页
2023届辽宁省沈阳126中学九年级数学第一学期期末检测模拟试题含解析_第2页
2023届辽宁省沈阳126中学九年级数学第一学期期末检测模拟试题含解析_第3页
2023届辽宁省沈阳126中学九年级数学第一学期期末检测模拟试题含解析_第4页
2023届辽宁省沈阳126中学九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=92.若一次函数y=ax+b(a≠0)的图像与x轴交点坐标为(2,0),则抛物线y=ax2+bx+c的对称轴为()A.直线x=1 B.直线x=-1 C.直线x=2 D.直线x=-23.如图,已知正方形ABCD的边长为2,点E、F分别为AB、BC边的中点,连接AF、DE相交于点M,则∠CDM等于A. B. C. D.4.2的相反数是()A. B. C. D.5.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.6.一元二次方程的左边配成完全平方后所得方程为()A. B. C. D.7.下列事件中,是必然事件的是()A.抛掷一枚硬币正面向上 B.从一副完整扑克牌中任抽一张,恰好抽到红桃C.今天太阳从西边升起 D.从4件红衣服和2件黑衣服中任抽3件有红衣服8.下列运算中,正确的是().A.2xx2 B.x2yyx2 C.xx42x D.2x36x39.如图,在△OAB中,∠AOB=55°,将△OAB在平面内绕点O顺时针旋转到△OA′B′的位置,使得BB′∥AO,则旋转角的度数为()A.125° B.70° C.55° D.15°10.已知关于x的方程x2-kx-6=0的一个根为x=-3,则实数k的值为()A.1 B.-1 C.2 D.-211.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b12.关于x的二次函数y=x2﹣mx+5,当x≥1时,y随x的增大而增大,则实数m的取值范围是()A.m<2 B.m=2 C.m≤2 D.m≥2二、填空题(每题4分,共24分)13.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.14.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为__________.15.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其长边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其长边恰好落在水平桌面l上,则木板上点A滚动所经过的路径长为_____.16.把一元二次方程x(x+1)=4(x﹣1)+2化为一般形式为_____.17.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).18.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.三、解答题(共78分)19.(8分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?20.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A,B,C,D四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a的值为;(2)求C等级对应扇形的圆心角的度数;(3)获得A等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.21.(8分)问题探究:(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形则蚂蚁爬行的最短路程即为线段的长)(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程.(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.22.(10分)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1.(1)求抛物线顶点C的坐标(用含m的代数式表示);(2)已知点A(0,3),B(2,3),若该抛物线与线段AB有公共点,结合函数图象,求出m的取值范围.23.(10分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.24.(10分)如图,抛物线与x轴相交于A,B两点,与y轴相交于点C.点D是直线AC上方抛物线上一点,过点D作y轴的平行线,与直线AC相交于点E.(1)求直线AC的解析式;(2)当线段DE的长度最大时,求点D的坐标.25.(12分)解下列方程:(1);(2)26.“十一”黄金周期间,西安旅行社推出了“西安红色游”项目团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元(每人收费不低于700元),设有x人参加这一旅游项目的团购活动.(1)当x=35时,每人的费用为______元.(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区参加此次“西安红色游”的人数.

参考答案一、选择题(每题4分,共48分)1、D【分析】先移项,再在方程两边都加上一次项系数一半的平方,即可得出答案.【详解】解:移项得:x2﹣4x=5,配方得:,(x﹣2)2=9,故选:D.【点睛】本题考查的知识点是用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤是解此题的关键.2、A【分析】先将(2,0)代入一次函数解析式y=ax+b,得到2a+b=0,即b=-2a,再根据抛物线y=ax2+bx+c的对称轴为直线x=即可求解.【详解】解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(2,0),

∴2a+b=0,即b=-2a,

∴抛物线y=ax2+bx+c的对称轴为直线x=.

故选:A.【点睛】本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:

点在函数的图象上,则点的坐标满足函数的解析式,二次函数y=ax2+bx+c的对称轴为直线x=.3、A【分析】根据正方形的特点可知∠CDM=∠DEA,利用勾股定理求出DE,根据余弦的定义即可求解.【详解】∵CD∥AB,∴∠CDM=∠DEA,∵E是AB中点,∴AE=AB=1∴DE=∴∠CDM=∠DEA==故选A.【点睛】此题主要考查余弦的求解,解题的关键是熟知余弦的定义.4、D【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,

故选D.5、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.6、B【解析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】把方程x2﹣2x﹣5=0的常数项移到等号的右边,得到x2﹣2x=5,方程两边同时加上一次项系数一半的平方,得到:x2﹣2x+(﹣1)2=5+(﹣1)2,配方得:(x﹣1)2=1.故选B.【点睛】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7、D【分析】必然事件是指在一定条件下一定会发生的事件,根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币正面向上,是随机事件,故本选项错误;

B、从一副完整扑克牌中任抽一张,恰好抽到红桃,是随机事件.故本选项错误;

C、今天太阳从西边升起,是不可能事件,故本选项错误;

D、从4件红衣服和2件黑衣服中任抽3件有红衣服,是必然事件,故本选项正确.

故选:D.【点睛】本题考查了事件发生的可能性,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A.2xxx,故本选项错误,B.x2yyx2,故本选项正确,C.,故本选项错误,D.,故本选项错误.故选B.【点睛】此题考查幂的乘方与积的乘方、合并同类项、同底数幂的除法,解题关键在于掌握运算法则.9、B【分析】据两直线平行,内错角相等可得,根据旋转的性质可得,然后利用等腰三角形两底角相等可得,即可得到旋转角的度数.【详解】,,又,中,,旋转角的度数为.故选:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.10、B【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【详解】解:因为x=-3是原方程的根,所以将x=-3代入原方程,即(-3)2+3k−6=0成立,解得k=-1.故选:B.【点睛】本题考查的是一元二次方程的根即方程的解的定义,解题的关键是把方程的解代入进行求解.11、D【分析】对于反比例函数(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内.由点A与点B的横坐标可知,点A与点B应该在第一象限内,然后根据反比例函数增减性分析问题.【详解】解:∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A对应的x值小于点B对应的x值,∴点A对应的y值大于点B对应的y值,即a>b故选D【点睛】本题考查反比例函数的图像性质,利用数形结合思想解题是关键.12、C【分析】先求出二次函数的对称轴,再根据二次函数的性质解答即可.【详解】解:二次函数y=x2﹣mx+5的开口向上,对称轴是x=,∵当x≥1时,y随x的增大而增大,∴≤1,解得,m≤2,故选:C.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【点睛】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键14、3【解析】试题解析:由旋转的性质可得:AD=AB,∴△ABD是等边三角形,∴BD=AB,∵AB=4,BC=7,∴CD=BC−BD=7−4=3.故答案为3.15、π【分析】木板转动两次的轨迹如图(见解析):第一次转动是以点M为圆心,AM为半径,圆心角为60度;第二次转动是以点N为圆心,为半径,圆心角为90度,根据弧长公式即可求得.【详解】由题意,木板转动两次的轨迹如图:(1)第一次转动是以点M为圆心,AM为半径,圆心角为60度,即所以弧的长(2)第二次转动是以点N为圆心,为半径,圆心角为90度,即所以弧的长(其中半径)所以总长为故答案为.【点睛】本题考查了图形的翻转、弧长公式(弧长,其中是圆心角弧度数,为半径),理解图形翻转的轨迹是解题关键.16、x2﹣3x+2=1.【分析】按照去括号、移项、合并同类项的步骤化为ax2+bx+c=1的形式即可.【详解】x2+x=4x﹣4+2,x2﹣3x+2=1.故答案为:x2﹣3x+2=1.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=1(a≠1).其中a是二次项系数,b是一次项系数,c是常数项.17、②③【解析】试题分析:∠BAD与∠ABC不一定相等,选项①错误;∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP;所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.则正确的选项序号有②③.故答案为②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.18、1.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+1+3+4+5)÷5=3,∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.考点:方差.三、解答题(共78分)19、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤1.【分析】(1)根据题目已知条件,可以判定销量与售价之间的关系式为一次函数,并可以进一步写出二者之间的关系式;然后根据单位利润等于单位售价减单位成本,以及销售利润等于单位利润乘销量,即可求出每天的销售利润与销售单价之间的关系式.(2)根据开口向下的抛物线在对称轴处取得最大值,即可计算出每天的销售利润及相应的销售单价.(3)根据开口向下的抛物线的图象的性质,满足要求的x的取值范围应该在﹣5(x﹣80)2+4500=4000的两根之间,即可确定满足题意的取值范围.【详解】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=1.∴当70≤x≤1时,每天的销售利润不低于4000元.【点睛】本题主要考查二次函数的应用.20、(1)8;(2);(3)【分析】(1)根据D等级的人数除以其百分比得到班级总人数,再乘以B等级的百分比即可得a的值;(2)用C等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为人,B等级的人数为人,故a的值为8;(2)∴C等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P(一男一女)答:恰好选中一男一女参加比赛的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A的结果数目m,然后利用概率公式计算事件A的概率为.也考查了统计图.21、(1)蚂蚁爬行的最短路程为1;(2)最短路程为;(3)蚂蚁爬行的最短距离为【分析】(1)蚂蚁爬行的最短路程为圆柱侧面展开图即矩形的对角线的长度,由勾股定理可求得;(2)蚂蚁爬行的最短路程为圆锥展开图中的AA′的连线,可求得△PAA′是等边三角形,则AA′=PA=4;(3)蚂蚁爬行的最短路程为圆锥展开图中点A到PA的距离.【详解】(1)由题意可知:在中,即蚂蚁爬行的最短路程为1.(2)连结则的长为蚂蚁爬行的最短路程,设为圆锥底面半径,为侧面展开图(扇形)的半径,则由题意得:即是等边三角形最短路程为(3)如图③所示是圆锥的侧面展开图,过作于点则线段的长就是蚂蚁爬行的最短路程.在Rt△ACP中,∵∠P=60°,∴∠PAC=30°∴PC=PA=×4=2∴AC==蚂蚁爬行的最短距离为【点睛】本题考查了勾股定理,矩形的性质,圆周长公式,弧长公式,等边三角形的判定和性质,直角三角形的性质,掌握相关公式和性质定理是本题的解题关键.22、(1)C(m,﹣1);(3)﹣3≤m≤0或3≤m≤3.【分析】(1)化成顶点式,即可求得顶点C的坐标;(3)由顶点C的坐标可知,抛物线的顶点C在直线y=﹣1上移动.分别求出抛物线过点A、点B时,m的值,画出此时函数的图象,结合图象即可求出m的取值范围.【详解】(1)y=x3﹣3mx+m3﹣1=(x﹣m)3﹣1,∴抛物线顶点为C(m,﹣1).(3)把A(0,3)的坐标代入y=x3﹣3mx+m3﹣1,得3=m3﹣1,解得m=±3.把B(3,3)的坐标代入y=x3﹣3mx+m3﹣1,得3=33﹣3m×3+m3﹣1,即m3﹣3m=0,解得m=0或m=3.结合函数图象可知:﹣3≤m≤0或3≤m≤3.【点睛】本题考查了二次函数的图象与系数的关系,二次函数图象上点的坐标特征,提现了转化思想和数形结合思想的应用.23、(1)0.1;(2)小颖的说法是错误的,理由见解析(3)列表见详解;【分析】(1)根据频率等于频数除以总数,即可分别求出“3点朝上”的频率和“5点朝上”的频率.(2)频率不等于概率,只能估算概率,故小颖的说法不对,事件发生具有随机性,故得知小红的说法也不对.(3)列表,找出点数之和是3的倍数的结果,除以总的结果,即可解决.【详解】解:(1)“3点朝上”的频率:6÷60=0.1“5点朝上”的频率:20÷60=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明5点朝上的概率最大,频率不等于概率;小红的说法是错误的,因为事件发生具有随机性,故“点朝上”的次数不一定是100次.(3)列表如下:共有36种情况,点数之和为3的倍数的情况有12种.故P(点数之和为3的倍数)==.【点睛】本题主要考查了频率的公式、频率与概率的关系以及列表法和树状图法求概率,能够熟练其概念以及准确的列表是解决本题的关键.24、(1)直线的解析式为;(2)当的长度最大时,点的坐标为.【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论