2023届湖南省岳阳市平江县数学九上期末质量跟踪监视模拟试题含解析_第1页
2023届湖南省岳阳市平江县数学九上期末质量跟踪监视模拟试题含解析_第2页
2023届湖南省岳阳市平江县数学九上期末质量跟踪监视模拟试题含解析_第3页
2023届湖南省岳阳市平江县数学九上期末质量跟踪监视模拟试题含解析_第4页
2023届湖南省岳阳市平江县数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下面空心圆柱形物体的左视图是()A. B. C. D.2.如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB的长,就计算出了圆环的面积,若测量得AB的长为20米,则圆环的面积为()A.10平方米 B.10π平方米 C.100平方米 D.100π平方米3.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.14.已知点,,在二次函数的图象上,则的大小关系是()A. B. C. D.5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是:A.5米 B.6米 C.6.5米 D.7米6.在平面直角坐标系中,将点向下平移个单位长度,所得到的点的坐标是()A. B.C. D.7.下列图形中不是位似图形的是A. B. C. D.8.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣39.对于反比例函数,下列说法正确的是()A.的值随值的增大而增大 B.的值随值的增大而减小C.当时,的值随值的增大而增大 D.当时,的值随值的增大而减小10.下列说法错误的是()A.将数用科学记数法表示为B.的平方根为C.无限小数是无理数D.比更大,比更小二、填空题(每小题3分,共24分)11.如图,正五边形内接于,为上一点,连接,则的度数为__________.12.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=_____.13.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=_____.14.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.15.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为__________.16.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.17.如图所示,中,,是中点,,垂足为点,与交于点,如果,那么______.18.如图,在中,,是边上一点,过点作,垂足为,,,,求的长.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线与轴交于点,点,与轴交于点,连接,位于轴右侧且垂直于轴的动直线,沿轴正方向从运动到(不含点和点),且分别交抛物线、线段以及轴于点,,.连接,,,,.(1)求抛物线的表达式;(2)如图1,当直线运动时,求使得和相似的点点的横坐标;(3)如图1,当直线运动时,求面积的最大值;(4)如图2,抛物线的对称轴交轴于点,过点作交轴于点.点、分别在对称轴和轴上运动,连接、.当的面积最大时,请直接写出的最小值.20.(6分)假期期间,甲、乙两位同学到某影城看电影,影城有《我和我的祖国》(记为)、《中国机长》(记为)、《攀登者》(记为)三部电影,甲、乙两位同学分别从中任选一部观看,每部被选中的可能性相同.用树状图或列表法求甲、乙两位同学选择同一部电影的概率.21.(6分)(1)将如图①所示的△ABC绕点C旋转后,得到△CA'B'.请先画出变换后的图形,再写出下列结论正确的序号是.

①;②线段AB绕C点旋转180°后,得到线段A'B';③;④C是线段BB'的中点.在第(1)问的启发下解答下面问题:(2)如图②,在中,,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜想∠F等于多少度时,BE=CF?(直接写出结果,不需证明)(3)如图③,在△ABC中,如果,而(2)中的其他条件不变,若BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系(等式表示)?并加以证明.22.(8分)如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为1.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.23.(8分)综合与探究:如图,已知抛物线与x轴相交于A、B两点,与y轴交于点C,连接BC,点P为线段BC上一动点,过点P作BC的垂线交抛物线于点Q,请解答下列问题:(1)求抛物线与x轴的交点A和B的坐标及顶点坐标(2)求线段PQ长度的最大值,并直接写出及此时点P的坐标.24.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1;(1)画出△ABC关于原点O对称的△A1B1C1.25.(10分)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.26.(10分)如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像在第二象限交于点,与轴交于点,点在轴上,满足条件:,且,点的坐标为,。(1)求反比例函数的表达式;(2)直接写出当时,的解集。

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:找出从几何体的左边看所得到的视图即可.解:从几何体的左边看可得,故选A.2、D【解析】过O作OC⊥AB于C,连OA,根据垂径定理得到AC=BC=10,再根据切线的性质得到AB为小圆的切线,于是有圆环的面积=π•OA2-π•OC2=π(OA2-OC2)=π•AC2,即可圆环的面积.【详解】过O作OC⊥AB于C,连OA,如图,∴AC=BC,而AB=20,∴AC=10,∵AB与小圆相切,∴OC为小圆的半径,∴圆环的面积=π•OA2-π•OC2=π(OA2-OC2)=π•AC2=100π(平方米).故选D.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.3、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=|k|=2;

又由于函数图象位于一、三象限,则k=4.

故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.4、D【分析】根据二次函数的解析式,能得出二次函数的图形开口向上,通过对称轴公式得出二次函数的对称轴为x=3,由此可知离对称轴水平距离越远,函数值越大即可求解.【详解】解:∵二次函数中a>0∴抛物线开口向上,有最小值.∵∴离对称轴水平距离越远,函数值越大,∵由二次函数图像的对称性可知x=4对称点x=2∴故选:D.【点睛】本题主要考查的是二次函数图像上点的坐标特点,解此题的关键是掌握二次函数图像的性质.5、A【分析】在,直接根据正弦的定义求解即可.【详解】如图:AB=13,作BC⊥AC,∵∴.故小车上升了5米,选A.【点睛】本题考查解直角三角形的应用-坡度坡角问题.解决本题的关键是将实际问题转化为数学问题,构造,在中解决问题.6、B【解析】横坐标,右移加,左移减;纵坐标,上移加,下移减可得所得到的点的坐标为(2,3-1),再解即可.【详解】解:将点P向下平移1个单位长度所得到的点坐标为(2,3-1),即(2,2),故选:B.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.7、C【解析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.【详解】根据位似图形的概念,A、B、D三个图形中的两个图形都是位似图形;C中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选C.【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.8、B【分析】先求出二次函数的对称轴,再根据二次函数的增减性求出最小值和最大值即可.【详解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函数的对称轴为直线x=1,∴﹣1<x<2时,x=1取得最大值为﹣1,x=﹣1时取得最小值为﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范围是﹣7<y≤﹣1.故选:B.【点睛】本题考查了二次函数与不等式,主要利用了二次函数的增减性和对称性,确定出对称轴从而判断出取得最大值和最小值的情况是解题的关键.9、C【分析】根据反比例函数的增减性逐一分析即可.【详解】解:在反比例函数中,﹣4<0∴反比例函数的图象在二、四象限,且在每一象限内y随x的增大而增大∴A选项缺少条件:在每一象限内,故A错误;B选项说法错误;C选项当时,反比例函数图象在第四象限,y随x的增大而增大,故C选项正确;D选项当时,反比例函数图象在第二象限,y随x的增大而增大,故D选项错误.故选C.【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键.10、C【分析】根据科学记数法的表示方法、平方根的定义、无理数的定义及实数比较大小的方法,进行逐项判断即可.【详解】A.65800000=6.58×107,故本选项正确;B.9的平方根为:,故本选项正确;C.无限不循环小数是无理数,而无限小数包含无限循环小数和无限不循环小数,故本选项错误;D.,因为,所以,即,故本选项正确.故选:C.【点睛】本题考查科学记数法、平方根、无理数的概念及实数比较大小,明确各定义和方法即可,难度不大.二、填空题(每小题3分,共24分)11、【分析】连接OA,OE.根据正五边形求出∠AOE的度数,再根据圆的有关性质即可解答【详解】如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴∠APE=∠AOE=36°【点睛】本题考查了正多边形和圆的有关性质,解题的关键是熟练掌握想关性质并且灵活运用题目的已知条件.12、3【分析】利用60°余弦值可求得OB的长,作AD⊥OB于点D,利用60°的正弦值可求得AD长,利用60°余弦值可求得BD长,OB-BD即为点A的横坐标,那么k等于点A的横纵坐标的积.【详解】解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴BD=AB×sin60°=,AD=AB×cos60°=1,∴OD=OA﹣AD=3,∴点B的坐标为(3,),∵B是双曲线y=上一点,∴k=xy=3.故答案为:3.【点睛】本题考查了解直角三角形,反比例函数图像上点的坐标特征,解决本题的关键是利用相应的特殊的三角函数值得到点B的坐标;反比例函数的比例系数等于在它上面的点的横纵坐标的积.13、【分析】探究规律,利用规律解决问题即可.【详解】观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.当,将故答案为:【点睛】本题考查规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.14、4【分析】根据三角形中位线的性质可得DE//BC,,即可证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】∵点D、E分别是边AB、AC的中点,∴DE为△ABC的中位线,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面积为16,∴S△ADE=×16=4.故答案为:4【点睛】本题考查三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.15、(1,2)【分析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,结合题中是在第一象限内进行变换进一步求解即可.【详解】由题意得:在第一象限内,以原点为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为A(2×,4×),即(1,2).故答案为:(1,2).【点睛】本题主要考查了直角坐标系中位似图形的变换,熟练掌握相关方法是解题关键.16、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.17、4【分析】根据直角三角形中线性质得CM=,根据相似三角形判定得△ABC∽△MBH,△AOC∽△HOM,根据相似三角形性质可得.【详解】因为中,,是中点,所以CM=又因为,所以所以△ABC∽△MBH,△AOC∽△HOM,所以所以故答案为:4【点睛】考核知识点:相似三角形.理解判定和性质是关键.18、.【分析】在中,根据求得CE,在中,根据求得BC,最后将CE,BC的值代入即可.【详解】解:在中,,.在中,,.的长为.【点睛】本题考查了解直角三角形,熟练掌握三角函数定义是解题的关键.三、解答题(共66分)19、(1);(2);(3);(4)1.【分析】(1)待定系数法即可求抛物线的表达式;(2)由得到,从而有,点P的纵坐标为k,则,找到P点横纵坐标之间的关系,代入二次函数的表达式中即可求出k的值,从而可求P的横坐标;(3)先用待定系数法求出直线BC的解析式,然后设点,从而表示出,利用二次函数的性质求最大值即可;(4)通过构造直角三角形将转化,要使取最小值,P,H,K应该与KM共线,通过验证发现K点正好在原点,然后根据特殊角的三角函数求值即可.【详解】(1)设抛物线的表达式为将,,代入抛物线的表达式中得解得∴抛物线的表达式为(2)∵直线l⊥x轴∴∵,∴设点P的纵坐标为k,则∴将代入二次函数表达式中,解得或(舍去)此时P点的横坐标为(3)设直线BC的解析式为将,代入得解得∴直线BC的解析式为设点当时,PD取最大值,最大值为∴面积的最大值为(4)将y轴绕G点逆时针旋转60°,作KM⊥GM于M,则,连接OP要使取最小值,P,H,K应该与KM共线,此时而此时面积的最大,点说明此时K点正好在原点O处即∴的最小值为4+6=1【点睛】本题主要考查二次函数与几何综合,相似三角形的判定及性质,掌握二次函数的图象和性质,相似三角形的判定及性质是解题的关键.20、,见解析【分析】列表法展示所有等可能的结果数,找出甲、乙选择同1部电影的结果数,然后利用概率公式求解.【详解】解:列表如下:由表可知,共有9种等可能结果,其中选择同一部电影的结果为3种,∴(他们选择同一部电影).【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21、(1)①②③④;(2);(3),证明见解析【分析】(1)通过旋转的性质可知①②③④正确;(2)可结合题意画出图形使BE=CF,然后通过测量得出猜想,再证明△BEF′是等边三角形即可证明;(3)结合(2)可进一步猜想,若∠F'=∠BED则可推出BE=CF,结合三角形外角的性质可知时∠F'=∠BED,依此证明即可.【详解】解:(1)如图①,根据旋转的性质,知①②④都是正确的,根据旋转的性质可得∠A′=∠A,∴A′B′∥AB,③正确,故答案为:①②③④.(2)∠F等于60°度时,BE=CF.

证明如下:∵D是BC的中点,∴BD=DC,如下图,将△CDF,绕点D旋转180°后,得到△BDF′,由旋转的性质可知,∠C=∠F′BC,CF=BF′∴CF∥BF′,∠F′=∠F=60°,

∴∠CAB+∠ABF′=180°,

∵∠BAC=120°,

∴∠ABF′=60°,∴∠F′EB=120°-∠ABF′-∠F′=60°,

∴△BEF′是等边三角形,

∴BE=BF′=CF.(3)数量关系:∠BAC=2∠F.证明如下:作△DBF'与△FCD关于点D成中心对称,如下图,则∠F'=∠F,FC=BF',∵∠BAC=2∠F,∠BAC=∠F+∠FEA,∴∠F=∠FEA,∴∠F'=∠F=∠BED=∠FEA,∴BE=CF.【点睛】本题考查旋转的性质,等边三角形的性质和判定,等腰三角形的性质和判定,三角形外角的性质.理解旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变是解决(1)的关键.(2)中能结合题意画出对应图形,正确猜想是解题关键;(3)中主要是要理解等腰三角形“等角对等边”.22、(1)y=x2+2x﹣3;(2)存在,点P坐标为或;(3)点N的坐标为(﹣4,1)【分析】(1)分别令y=0,x=0,可表示出A、B、C的坐标,从而表示△ABC的面积,求出a的值继而即可得二次函数解析式;(2)如图①,当点P在x轴上方抛物线上时,平移BC所在的直线过点O交x轴上方抛物线于点P,则有BC∥OP,此时∠POB=∠CBO,联立抛物线得解析式和OP所在直线的解析式解方程组即可求解;当点P在x轴下方时,取BC的中点D,易知D点坐标为(,),连接OD并延长交x轴下方的抛物线于点P,由直角三角形斜边中线定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,联立抛物线的解析式和OP所在直线的解析式解方程组即可求解.(3)如图②,通过点M到x轴的距离可表示△ABM的面积,由S△ABM=S△BNM,可证明点A、点N到直线BM的距离相等,即AN∥BM,通过角的转化得到AM=BN,设点N的坐标,表示出BN的距离可求出点N.【详解】(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a,当x=0,y=a∴点C坐标为(0,a),∵C(0,a)在x轴下方∴a<0∵点A位于点B的左侧,∴点A坐标为(a,0),点B坐标为(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面积为1,∴,∴a1=﹣3,a2=4(因为a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)设直线BC:y=kx﹣3,则0=k﹣3,∴k=3;①当点P在x轴上方时,直线OP的函数表达式为y=3x,则,∴,,∴点P坐标为;②当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则∴,,∴点P坐标为,综上可得,点P坐标为或;(3)如图,过点A作AE⊥BM于点E,过点N作NF⊥BM于点F,设AM与BN交于点G,延长MN与x轴交于点H;∵AB=4,点M到x轴的距离为d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四边形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三点的横坐标相同,且BH=MH,∵M是抛物线上一点,∴可设点M的坐标为(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴点N的横坐标为﹣4,可设直线AC:y=kx﹣3,则0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,当x=﹣4时,y=﹣(﹣4)﹣3=1,∴点N的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.23、(1)点A的坐标为(-2,0),点B的坐标为(1,0),顶点坐标为(1,).(2)PQ的最大值=,此时,点P的坐标为(1,3)【分析】(1)令y=0可求得x的值,可知点A、点B的坐标,运用配方法可求抛物线的顶点坐标;(2)先求出直线BC的表达式,再设点Q的坐标为(m,)则点E的坐标为(m,-m+1),得QE=-(-m+1)=,求出QE的最大值即可解决问题.【详解】(1)把y=0代入中得:解得:x1=-2,x2=1∴点A的坐标为(-2,0),点B的坐标为(1,0).∵∴抛物线W的顶点坐标为(1,).(2)过点Q作QF⊥x轴,垂足为F,交线段BC于点E.当x=0时,代入得:y=1,∴点C的坐标为(0,1),∵点B的坐标为(1,0).∴OC=OB=1,∴∠OBC=15°.设QC的表达式为y=kx+b,把C(0,1),B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论