




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.B.C.D.2.已知二次函数的图象如图所示,则下列结论正确的是()A. B. C. D.的符号不能确定3.如图,、、是的切线,、、是切点,分别交、于、两点.如,则的度数为()A. B. C. D.4.二次函数中与的部分对应值如下表所示,则下列结论错误的是()-1013-1353A. B.当时,的值随值的增大而减小C.当时, D.3是方程的一个根5.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.6.二次函数的图象如图,则一次函数的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限7.若关于x的一元二次方程有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.08.如图所示的工件的主视图是()A. B. C. D.9.如图,在Rt△ABC中,∠ACB=90°,AC=,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A. B. C. D.10.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)二、填空题(每小题3分,共24分)11.已知二次函数,用配方法化为的形式为_________________,这个二次函数图像的顶点坐标为____________.12.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.13.如图,⊙O与抛物线交于两点,且,则⊙O的半径等于_______.14.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为_______米.15.毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是_______.16.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.17.若,,则______.18.一个不透明的袋子中装有除颜色外其他都相同的2个红球和1个黄球,随机摸出一个小球后,放回并摇匀,再随机摸岀一个,则两次都摸到黄球的概率为__________.三、解答题(共66分)19.(10分)如图,一次函数的图象与反比例函数的图象交于两点,且点的横坐标为.(1)求反比例函数的解析式;(2)求点的坐标.20.(6分)如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为多少?21.(6分)如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上是否有一点D(x,y)使S△ABD=S△ABC,求点D的坐标.22.(8分)如图,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.23.(8分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,求∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问∠ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出∠ADE的度数;(3)在(2)的条件下,若AB=6,求CF的最大值.24.(8分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣125.(10分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?26.(10分)一个小球沿着足够长的光滑斜面向上滚动,它的速度与时间满足一次函数关系,其部分数据如下表:(1)求小球的速度v与时间t的关系.(2)小球在运动过程中,离出发点的距离S与v的关系满足,求S与t的关系式,并求出小球经过多长时间距离出发点32m?(3)求时间为多少时小球离出发点最远,最远距离为多少?
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据圆周角定理求出,根据互余求出∠COD的度数,再根据等腰三角形性质即可求出答案.【详解】解:连接OD,,,,,.故选D.【点睛】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键.2、A【分析】由题意根据二次函数的图象与性质即可求出答案判断选项.【详解】解:由图象可知开口向上a>0,与y轴交点在上半轴c>0,∴ac>0,故选A.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.3、C【分析】连接OA、OB、OE,由切线的性质可求出∠AOB,再由切线长定理可得出∠COD=∠AOB,可求得答案.【详解】解:连接OA、OE、OB,所得图形如下:由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,∴△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∵∠APB=40°,∴∠AOB=140°,∴∠COD=70°.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.4、C【分析】根据表格中的数值计算出函数表达式,从而可判断A选项,利用对称轴公式可计算出对称轴,从而判断其增减性,再根据函数图象及表格中y=3时对应的x,可判断C选项,把对应参数值代入即可判断D选项.【详解】把(-1,-1),(0,3),(1,5)代入得,解得,∴,A.,故本选项正确;B.该函数对称轴为直线,且,函数图象开口向下,所以当时,y随x的增大而减小,故本选项正确;C.由表格可知,当x=0或x=3时,y=3,且函数图象开口向下,所以当y<3时,x<0或x>3,故本选项错误;D.方程为,把x=3代入得-9+6+3=0,所以本选项正确.故选:C.【点睛】本题考查了二次函数表达式求法,二次函数图象与系数的关系,二次函数的性质等知识,“待定系数法”是求函数表达式的常用方法,需熟练掌握.5、B【解析】试题分析:根据中心对称图形的概念,A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.考点:中心对称图形6、C【解析】∵抛物线的顶点在第四象限,∴﹣>1,<1.∴<1,∴一次函数的图象经过二、三、四象限.故选C.7、D【解析】由题意可知,该一元二次方程根的判别式的值大于零,即(-2)2-4m>0,∴m<1.对照本题的四个选项,只有D选项符合上述m的取值范围.故本题应选D.8、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B.9、A【详解】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=,∴BC=AC•tan30°==2,∴S阴影=S△ABC﹣S扇形CBD==.故选A.【点睛】本题考查解直角三角形和扇形面积的计算,掌握公式正确计算是本题的解题关键.10、A【分析】根据顶点坐标公式,可得答案.【详解】解:的顶点横坐标是,纵坐标是,的顶点坐标是.故选A.【点睛】本题考查了二次函数的性质,二次函数的顶点坐标是二、填空题(每小题3分,共24分)11、【分析】先利用配方法提出二次项的系数,再加上一次项系数的一半的平方来凑完全平方式,再根据顶点式即可得到顶点的坐标.【详解】利用完全平方公式得:由此可得顶点坐标为.【点睛】本题考查了用配方法将二次函数的一般式转化为顶点式、以及二次函数顶点坐标,熟练运用配方法是解题关键.12、4【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.13、【分析】连接OA,AB与y轴交于点C,根据AB=2,可得出点A,B的横坐标分别为−1,1.再代入抛物线即可得出点A,B的坐标,再根据勾股定理得出⊙O的半径.【详解】连接OA,设AB与y轴交于点C,∵AB=2,∴点A,B的横坐标分别为−1,1.∵⊙O与抛物线交于A,B两点,∴点A,B的坐标分别为(−1,),(1,),在Rt△OAC中,由勾股定理得OA===,∴⊙O的半径为.故答案为:.【点睛】本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A的纵坐标是解题的关键.14、2【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【详解】解:∵DE∥AB,DF∥AC,
∴△DEF∽△ABC,
∴,
即,
∴AC=6×1.5=2米.
故答案为:2.【点睛】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15、【详解】试题分析:在秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗5五人中,唐朝以后出生的有2人.因此在上述5人中随机抽取一张,所有抽到的人物为唐朝以后出生的概率=.故答案为.考点:概率公式16、【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.17、28【分析】先根据完全平方公式把变形,然后把,代入计算即可.【详解】∵,,∴(a+b)2-2ab=36-8=28.故答案为:28.【点睛】本题考查了完全平方公式的变形求值,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.18、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.【详解】画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有1种结果,
∴两次都摸到黄球的概率为;
故答案为:.【点睛】此题考查列表法或树状图法求概率.解题关键在于掌握注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.三、解答题(共66分)19、(1)反比例函数的解析式是y=;(2)(﹣1,﹣6).【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【详解】(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).考点:反比例函数与一次函数的交点问题.20、5【分析】作辅助线构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH,得出DG和AG的长度,即可得出答案.【详解】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC•DH=10,=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=或(舍),故答案为:【点睛】本题考查的是三角形的综合,运用到了三角函数和全等的相关知识,需要熟练掌握相关基础知识.21、(1)1;(2)B(﹣,0);(3)D的坐标是(,1)或(,﹣1)或(,﹣1)【分析】(1)把点A的坐标代入函数解析式,利用方程来求m的值;(2)令y=0,则通过解方程来求点B的横坐标;(3)利用三角形的面积公式进行解答.【详解】解:(1)把A(1,0)代入y=﹣2x2+x+m,得﹣2×12+1+m=0,解得m=1;(2)由(1)知,抛物线的解析式为y=﹣2x2+x+1.令y=0,则﹣2x2+x+1=0,故x==,解得x1=﹣,x2=1.故该抛物线与x轴的交点是(﹣,0)和(1,0).∵点为A(1,0),∴另一个交点为B是(﹣,0);(3)∵抛物线解析式为y=﹣2x2+x+1,∴C(0,1),∴OC=1.∵S△ABD=S△ABC,∴点D与点C的纵坐标的绝对值相等,∴当y=1时,﹣2x2+x+1=1,即x(﹣2x+1)=0解得x=0或x=.即(0,1)(与点C重合,舍去)和D(,1)符合题意.当y=﹣1时,﹣2x2+x+1=﹣1,即2x2﹣x﹣2=0解得x=.即点(,﹣1)和(,﹣1)符合题意.综上所述,满足条件的点D的坐标是(,1)或(,﹣1)或(,﹣1).【点睛】本题考查了抛物线的图象和性质,解答(3)题时,注意满足条件的点D还可以在x轴的下方是解题关键.22、(1)y=-x2-2x+3(2)(-,)(3)满足条件的点P的坐标为P(-1,1)或(-1,-2)【详解】(1)∵抛物线()与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:;(2)如图2,过点E作EF⊥x轴于点F,设E(a,)(﹣3<a<0),∴EF=,BF=a+3,OF=﹣a,∴S四边形BOCE==BF•EF+(OC+EF)•OF===,∴当a=时,S四边形BOCE最大,且最大值为.此时,点E坐标为(,);(3)∵抛物线的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,如图,∴PA=PA′,∠APA′=90°,如图3,过A′作A′N⊥对称轴于N,设对称轴与x轴交于点M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠MPA,在△A′NP与△APM中,∵∠A′NP=∠AMP=90°,∠NA′P=∠MPA,PA′=AP,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入得:,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.旋转的性质;5.综合题;6.压轴题.23、(1)∠ADE=30°;(2)∠ADE=30°,理由见解析;(3)【分析】(1)利用SAS定理证明△ABD≌△ACE,根据全等三角形的性质得到AD=AE,∠CAE=∠BAD,根据等腰三角形的性质、三角形内角和定理计算即可证明;(2)同(1)的证明方法相同;(3)证明△ADF∽△ACD,根据相似三角形的性质得到,求出AD的最小值,得到AF的最小值,求出CF的最大值.【详解】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的结论成立,证明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°,∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF•AC,∴AD2=6AF,∴AF=,∴当AD最短时,AF最短、CF最长,易得当AD⊥BC时,AF最短、CF最长,此时AD=AB=3,∴AF最短===,∴CF最长=AC-AF最短=6-=.【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质以及相似三角形的判定与性质等知识,解题的关键是正确寻找全等三角形、相似三角形解决问题,属于中考常考题型.24、1【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【详解】原式=1×+3﹣+1﹣1=1.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手工纸艺买卖合同
- 客户关系管理技术
- 商学院合同(2篇)
- 格式电影上映协议
- 家居清洗服务保证金协议
- 合同中房屋取暖条款
- 旅游策划劳务协议
- 幼儿园语言教育
- 库存管理的基本内容
- 建筑安全元个人工作总结
- 施工质量标准及质量管理体系
- 产后恢复操指导的操作流程及考核评分标准
- 雨水方沟施工工艺全
- 事业单位工作人员调动申请表
- DB32∕T 3916-2020 建筑地基基础检测规程
- 山东义能煤矿有限公司矿山地质环境保护与土地复垦方案
- 华能国际电力股份有限公司本质安全体系管理手册
- 《对话大千世界-绘画创意与实践》 第1课时 定格青春-向艺术家学创作
- 2021南充中考英语试卷及答案及听力
- 《刘姥姥人物形象分析》课件-部编版语文九年级上册
- 异丁烷安全标签
评论
0/150
提交评论