广东省高州市谢鸡镇2025届九上数学期末考试模拟试题含解析_第1页
广东省高州市谢鸡镇2025届九上数学期末考试模拟试题含解析_第2页
广东省高州市谢鸡镇2025届九上数学期末考试模拟试题含解析_第3页
广东省高州市谢鸡镇2025届九上数学期末考试模拟试题含解析_第4页
广东省高州市谢鸡镇2025届九上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省高州市谢鸡镇2025届九上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x-1)2-3C.y=2(x+1)2-3 D.y=2(x-1)2+32.在▱ABCD中,∠ACB=25°,现将▱ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数()A.135° B.120° C.115° D.100°3.如图,在△ABC中,DE∥BC,若=,则的值为()A. B. C. D.4.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是()A.①②③④ B.④①③② C.④②③① D.④③②①5.若2a=3b,则下列比列式正确的是()A. B. C. D.6.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣27.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A.=465 B.=465 C.x(x﹣1)=465 D.x(x+1)=4658.如图,在中,,,,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.89.如图,正方形中,点是以为直径的半圆与对角线的交点.现随机向正方形内投掷一枚小针,则针尖落在阴影区域的概率为()A. B. C. D.10.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b11.某次聚会,每两个参加聚会的人都互相握了一次手,有人统计一共握了10次手.求这次聚会的人数是多少?设这次聚会共有人,可列出的方程为()A. B. C. D.12.如图,BD是⊙O的直径,圆周角∠A=30,则∠CBD的度数是()A.30 B.45 C.60 D.80二、填空题(每题4分,共24分)13.如图,分别以等边三角形的每个顶点为圆心,边长为半径,在另两个顶点之间作一段弧,三段弧围成的曲边三角形称为“勒洛三角形”,若等边三角形的边长为2,则“勒洛三角形”的面积为_________.14.如图,在Rt△ABC中,∠BCA=90º,∠BAC=30º,BC=4,将Rt△ABC绕A点顺时针旋转90º得到Rt△ADE,则BC扫过的阴影面积为___.15.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数的图象与正方形OABC的边有交点,请写出一个符合条件的k值__________.16.如图,在矩形中,点为的中点,交于点,连接,下列结论:①;②;③;④若,则.其中正确的结论是______________.(填写所有正确结论的序号)17.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.18.如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=,∠ADC=60°,则劣弧的长为_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,抛物线的对称轴x=1,与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的解析式及A、B点的坐标.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形;若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大;求出此时P点的坐标和四边形ABPC的最大面积.20.(8分)随着经济快速发展,环境问题越来越受到人们的关注.某校为了了解节能减排、垃圾分类等知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将结果绘制成以下两幅不完整的统计图,请根据统计图回答下列问题:(1)本次调查的学生共有___________人,估计该校名学生中“不了解”的人数是__________人;(2)将条形统计图补充完整;(3)“非常了解”的人中有,两名男生,,两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到名男生的概率.21.(8分)(1)已知a,b,c,d是成比例线段,其中a=2cm,b=3cm,d=6cm,求线段c的长;(2)已知,且a+b﹣5c=15,求c的值.22.(10分)如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)23.(10分)如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.24.(10分)一节数学课后,老师布置了一道课后练习题:如图1,是的直径,点在上,,垂足为,,分别交、于点、.求证:.图1图2(1)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)如图2,若点和点在的两侧,、的延长线交于点,的延长线交于点,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若,,求的长.25.(12分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)若BC=4,AC=8,求CD的长.26.关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)当m为最大的整数时,解这个一元二次方程.

参考答案一、选择题(每题4分,共48分)1、A【分析】抛物线平移不改变a的值.【详解】原抛物线的顶点为(0,0),向左平移1个单位,再向上平移1个单位,那么新抛物线的顶点为(-1,1).可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.

故选:A.2、C【详解】解:根据图形的折叠可得:AE=EC,即∠EAC=∠ECA=25°,∠FEC=∠AEF,∠DFE=∠GFE,又∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=130°,∴∠FEC=65°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE+∠FEC=180°,∴∠DFE=115°,∴∠GFE=115°,故选C.考点:1.平行四边形的性质2.图形的折叠的性质.3、A【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵=,∴,∵DE∥BC,∴,故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.4、B【分析】北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.【详解】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北−北−东北−东,即④①③②故选:B.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.5、C【分析】根据比例的性质即可得到结论.【详解】解:∵2a=3b,∴故选:C.【点睛】此题主要考查比例的性质,解题的关键是熟知其变形.6、D【解析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,故选D.【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.7、A【解析】因为每位同学都要与除自己之外的(x﹣1)名同学握手一次,所以共握手x(x﹣1)次,由于每次握手都是两人,应该算一次,所以共握手x(x﹣1)÷2次,解此方程即可.【详解】解:设九年级(1)班有x名同学,根据题意列出的方程是=465,故选A.【点睛】本题主要考查一元二次方程在实际生活中的应用,明白两人握手应该只算一次并据此列出方程是解题的关键.8、B【解析】设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,根据图形与圆的性质即可求解.【详解】如图,设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为,∵,,∴∵,∴∵点O是AB的三等分点,∴,,∴,∵⊙O与AC相切于点D,∴,∴,∴,∴,∴MN最小值为,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值,,∴MN长的最大值与最小值的和是1.故选B.【点睛】此题主要考查圆与三角形的性质,解题的关键是熟知圆的性质及直角三角形的性质.9、B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,

∵AB为直径,

∴∠AEB=90°,

而AC为正方形的对角线,

∴AE=BE=CE,

∴弓形AE的面积=弓形BE的面积,

∴阴影部分的面积=△BCE的面积,

∴镖落在阴影部分的概率=.

故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.10、B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.11、D【分析】每个人都要和他自己以外的人握手一次,但两个人之间只握手一次,所以等量关系为×聚会人数×(聚会人数-1)=总握手次数,把相关数值代入即可.【详解】解:设参加这次聚会的同学共有x人,由题意得:,故选:D.【点睛】此题主要考查了一元二次方程的应用,正确理解题意,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12、C【解析】由BD为⊙O的直径,可证∠BCD=90°,又由圆周角定理知,∠D=∠A=30°,即可求∠CBD.【详解】解:如图,连接CD,∵BD为⊙O的直径,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故选C.【点睛】本题利用了直径所对的圆周角是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(每题4分,共24分)13、【分析】图中勒洛三角形是由三块相同的扇形叠加而成,其面积三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】解:过作于,∵是等边三角形,,,,,,的面积为,,勒洛三角形的面积,故答案为:.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出勒洛三角形的面积三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.14、4π【分析】先利用含30度的直角三角形三边的关系得到AB=2BC=8,AC=BC=,再根据旋转的性质得到∠CAE=∠BAD=90°,然后根据扇形的面积公式,利用BC扫过的阴影面积=S扇形BAD-S△CAE进行计算.【详解】解:∵∠BCA=90°,∠BAC=30°,∴AB=2BC=8,AC=BC=4,∵Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,∴∠CAE=∠BAD=90°,∴BC扫过的阴影面积=S扇形BAD-S△CAE=.故答案为:4π.【点睛】本题考查了扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=或S扇形=(其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了旋转的性质.15、1(满足条件的k值的范围是0<k≤4)【分析】反比例函数上一点向x、y轴分别作垂线,分别交于y轴和x轴,则围成的矩形的面积为|k|,据此进一步求解即可.【详解】∵反比例函数图像与正方形有交点,∴当交于B点时,此时围成的矩形面积最大且为4,∴|k|最大为4,∵在第一象限,∴k为正数,即0<k≤4,∴k的取值可以为:1.故答案为:1(满足条件的k值的范围是0<k≤4).【点睛】本题主要考查了反比例函数中比例系数的相关运用,熟练掌握相关概念是解题关键.16、①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB,FE交于点G,根据ASA可证明△AEF≌△BEG,可得AF=BG,EF=EG,进一步即可求得AF、BC与CF的关系,S△CEF与S△EAF+S△CBE的关系,进而可判断②与③;由,结合已知和锐角三角函数的知识可得,进一步即可根据AAS证明结论④;问题即得解决.【详解】解:∵,,∵四边形ABCD是矩形,∴∠B=90°,∴,,所以①正确;延长CB,FE交于点G,如图,在△AEF和△BEG中,∵∠FAE=∠GBE=90°,AE=BE,∠AEF=∠BEG,∴△AEF≌△BEG(ASA),∴AF=BG,EF=EG,∴S△CEG=S△CEF,∵CE⊥EG,∴CG=CF,∴AF+BC=BG+BC=CG=CF,所以②错误;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正确;若,则,,,在和中,∵∠CEF=∠D=90°,,CF=CF,≌,所以④正确.综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.17、1【分析】三条弧与边AB所围成的阴影部分的面积=三角形的面积-三个小扇形的面积.【详解】解:阴影部分的面积为:1×1÷1---=1-.故答案为1-.【点睛】本题主要考查了扇形的面积计算,关键是理解阴影部分的面积=三角形的面积-三个小扇形的面积.18、【分析】连接DF,OD,根据圆周角定理得到∠CDF=90°,根据三角形的内角和得到∠COD=120°,根据三角函数的定义得到CF==4,根据弧长公式即可得到结论.【详解】解:如图,连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半径=2,∴劣弧的长==π,故答案为π.【点睛】本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.三、解答题(共78分)19、(1)y=x2﹣2x﹣3,点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,点P(1+,﹣);(3)故S有最大值为,此时点P(,﹣).【分析】(1)根据题意得到函数的对称轴为:x=﹣=1,解出b=﹣2,即可求解;(2)四边形POP′C为菱形,则yP=﹣OC=﹣,即可求解;(3)过点P作PH∥y轴交BC于点P,由点B、C的坐标得到直线BC的表达式,设点P(x,x2﹣2x﹣3),则点H(x,x﹣3),再根据ABPC的面积S=S△ABC+S△BCP即可求解.【详解】(1)函数的对称轴为:x=﹣=1,解得:b=﹣2,∴y=x2﹣2x+c,再将点C(0,﹣3)代入得到c=-3,,∴抛物线的表达式为:y=x2﹣2x﹣3,令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,理由:如图1,四边形POP′C为菱形,则yP=﹣OC=﹣,即y=x2﹣2x﹣3=﹣,解得:x=1(舍去负值),故点P(1+,﹣);(3)过点P作PH∥y轴交BC于点P,由点B、C的坐标得到直线BC的表达式为:y=x﹣3,设点P(x,x2﹣2x﹣3),则点H(x,x﹣3),ABPC的面积S=S△ABC+S△BCP=×AB×OC+×PH×OB=×4×3+×3×(x﹣3﹣x2+2x+3)=﹣x2+x+6,=∵-<0,∴当x=时,S有最大值为,此时点P(,﹣).【点睛】此题是一道二次函数的综合题,考查待定系数法求函数解析式,图象与坐标轴的交点,翻折的性质,菱形的性质,利用函数解析式确定最大值,(3)是此题的难点,利用分割法求四边形的面积是解题的关键.20、(1)50,600;(2)见解析;(3)见解析,【分析】(1)用“非常了解”的人数除以其对应百分比可得总人数,用1减去其他所占的百分比可得“不了解”的学生所占百分比,用2000乘以“不了解”的学生所占百分比即可得“不了解”的学生人数;(2)先求出“不了解”的人数,再补充条形统计图即可;(3)根据题意画出表格,可得一共12种抽取情况,恰好抽到2名男生的情况有2种,再利用概率公式计算即可.【详解】解:(1)本次调查的学生总人数为人;“不了解”的学生所占百分比为,估计该校名学生中“不了解”的人数约有(人)(2)30%×50=15(人)如下图(3)列表如下,由表可知共有种可能的结果,恰好抽到名男生的结果有个,(恰好抽到名男生)【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及树状图和表格求远概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21、(1)1;(2)-1【分析】(1)根据比例线段的定义得到a:b=c:d,然后把a=2cm,b=3cm,d=6cm代入进行计算即可;

(2)设=k,得出a=2k,b=3k,c=1k,代入a+b-5c=15,求出k的值,从而得出c的值.【详解】(1)∵a,b,c,d是成比例线段

∴,

即,

∴c=1;

(2)设=k,则a=2k,b=3k,c=1k,

∵a+b-5c=15

∴2k+3k-20k=15

解得:k=-1

∴c=-1.【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质.22、24米【分析】由i==,DE2+EC2=CD2,解得DE=5m,EC=m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,则四边形DEBG、四边形DECH、四边形BCHG都是矩形,证得AB=BC,设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,在Rt△ADG中,=tan∠ADG,代入即可得出结果.【详解】解:在Rt△DEC中,∵i==,,DE2+EC2=CD2,CD=10,∴DE2+(DE)2=102,解得:DE=5(m),

∴EC=m,

过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:

则四边形DEBG、四边形DECH、四边形BCHG都是矩形,

∵∠ACB=45°,AB⊥BC,

∴AB=BC,

设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,

在Rt△ADG中,∵=tan∠ADG,,解得:x=15+5≈24,答:楼AB的高度为24米.【点睛】本题考查了解直角三角形的应用-方向角问题,通过解直角三角形得出方程是解题的关键.23、(1);(2)存在,理由见解析;D(-4,)或(2,);(3)最大值;最小值【分析】(1)将点A、B的坐标代入函数解析式计算即可得到;(2)点D应在x轴的上方或下方,在下方时通过计算得△ABD的面积是△ABC面积的倍,判断点D应在x轴的上方,设设D(m,n),根据面积关系求出m、n的值即可得到点D的坐标;(3)设E(x,y),由点E是以点C为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E的坐标为E,再根据点F是AE中点表示出点F的坐标,再设设F(m,n),再利用m、n、与x的关系得到n=,通过计算整理得出,由此得出F点的轨迹是以为圆心,以为半径的圆,再计算最大值与最小值即可.【详解】解:(1)将点A(-3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论