版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某小组作“用频率估计概率的实验”时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()A.掷一个质地均匀的正六面体骰子,向上的面点数是4B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红色D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球2.方程x2+x-12=0的两个根为()A.x1=-2,x2=6 B.x1=-6,x2=2 C.x1=-3,x2=4 D.x1=-4,x2=33.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.4.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A. B. C. D.5.如图,下列条件中,能判定的是()A. B. C. D.6.下图中反比例函数与一次函数在同一直角坐标系中的大致图象是()A. B.C. D.7.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),则下列说法错误的是()A.a+c=0B.无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2C.当函数在x<时,y随x的增大而减小D.当﹣1<m<n<0时,m+n<8.如图,、两点在双曲线上,分别经过点、两点向、轴作垂线段,已知,则()A.6 B.5 C.4 D.39.下列命题正确的是()A.长度为5cm、2cm和3cm的三条线段可以组成三角形B.的平方根是±4C.是实数,点一定在第一象限D.两条直线被第三条直线所截,同位角相等10.下列图形:任取一个是中心对称图形的概率是()A. B. C. D.111.关于反比例函数,下列说法正确的是()A.图象过(1,2)点 B.图象在第一、三象限C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大12.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()A. B. C. D.二、填空题(每题4分,共24分)13.点在抛物线上,则__________.(填“>”,“<”或“=”).14.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.15.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为__________.16.若分别是方程的两实根,则的值是__________.17.已知二次函数(m为常数),若对于一切实数m和均有y≥k,则k的最大值为____________.18.如图,菱形的顶点在轴正半轴上,顶点的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,则点的对应点的坐标为________.三、解答题(共78分)19.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?20.(8分)如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.(1)求的长.(2)若点是线段的中点,求的值.(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?21.(8分)如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.(1)求证:AC为⊙O切线.(2)若AB=5,DF=4,求⊙O半径长.22.(10分)某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.23.(10分)综合与探究如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(10分)如图,是的直径,是弦,是弧的中点,过点作的切线交的延长线于点,过点作于点,交于点.(1)求证:;(2)若,,求的长.25.(12分)已知二次函数y=x2﹣2x﹣3(1)求函数图象的顶点坐标,与坐标轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当y<0时,求x的取值范围;当y>﹣3时,求x的取值范围.26.数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【详解】解:A、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故A选项正确;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故B选项错误;
C、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:,故C选项错误;
D、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故D选项错误;
故选:A.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.2、D【解析】试题分析:将x2+x﹣12分解因式成(x+4)(x﹣1),解x+4=0或x﹣1=0即可得出结论.x2+x﹣12=(x+4)(x﹣1)=0,则x+4=0,或x﹣1=0,解得:x1=﹣4,x2=1.考点:解一元二次方程-因式分解法3、A【分析】根据概率公式解答即可.【详解】袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率为:.故选A.【点睛】本题考查了随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4、C【解析】∵在这5个数中只有0、3.14和6为有理数,∴从这5个数中随机抽取一个数,抽到有理数的概率是.故选C.5、D【分析】根据相似三角形的各个判定定理逐一分析即可.【详解】解:∵∠A=∠A若,不是对应角,不能判定,故A选项不符合题意;若,不是对应角,不能判定,故B选项不符合题意;若,但∠A不是两组对应边的夹角,不能判定,故C选项不符合题意;若,根据有两组对应边成比例且夹角对应相等的两个三角形相似可得,故D选项符合题意.故选D.【点睛】此题考查的是使两个三角形相似所添加的条件,掌握相似三角形的各个判定定理是解决此题的关键.6、B【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【详解】(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:B.【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.7、C【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M(﹣1,2)和点N(1,﹣2),∴a﹣b+c=2,a+b+c=﹣2,∴a+c=0,b=﹣2,∴A正确;∵c=﹣a,b=﹣2,∴y=ax2﹣2x﹣a,∴△=4+4a2>0,∴无论a为何值,函数图象与x轴必有两个交点,∵x1+x2=,x1x2=﹣1,∴|x1﹣x2|=2>2,∴B正确;二次函数y=ax2+bx+c(a>0)的对称轴x=﹣=,当a>0时,不能判定x<时,y随x的增大而减小;∴C错误;∵﹣1<m<n<0,a>0,∴m+n<0,>0,∴m+n<;∴D正确,故选:C.【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.8、C【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线的系数k,由此即可求出S1+S1.【详解】解:∵点A、B是双曲线上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=2,
∴S1+S1=2+2-1×1=2.
故选:C.【点睛】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.9、C【分析】根据三角形三边关系、平方根的性质、象限的性质、平行线的性质进行判断即可.【详解】A.长度为5cm、2cm和3cm的三条线段不可以组成三角形,错误;B.的平方根是±2,错误;C.是实数,点一定在第一象限,正确;D.两条平行线被第三条直线所截,同位角相等,错误;故答案为:C.【点睛】本题考查了判断命题真假的问题,掌握三角形三边关系、平方根的性质、象限的性质、平行线的性质是解题的关键.10、C【解析】本题考查概率的计算和中心对称图形的概念,根据中心对称图形的概念可以判定①③④是中心对称图形,4个图形任取一个是中心对称的图形的概率为P=,因此本题正确选项是C.11、D【解析】试题分析:根据反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大.可由k=-2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选D.考点:反比例函数图象的性质12、D【解析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可直接选出答案.【详解】在正方形、矩形、菱形、平行四边形中,其中都是中心对称图形,故共有个中心对称图形.故选D.【点睛】本题考查了中心对称图形,正确掌握中心对称图形的性质是解题的关键.二、填空题(每题4分,共24分)13、>【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.【详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.故答案为:>.【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.14、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.15、(1,2)【分析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,结合题中是在第一象限内进行变换进一步求解即可.【详解】由题意得:在第一象限内,以原点为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为A(2×,4×),即(1,2).故答案为:(1,2).【点睛】本题主要考查了直角坐标系中位似图形的变换,熟练掌握相关方法是解题关键.16、3【分析】根据一元二次方程根与系数的关系即可得答案.【详解】∵分别是方程的两实根,∴=3,故答案为:3【点睛】此题考查根与系数的关系,一元二次方程根与系数的关系:x1+x2=-,x1x2=;熟练掌握韦达定理是解题关键.17、【分析】因为二次函数系数大于0,先用含有m的代数式表示出函数y的最小值,得出,再求出于m的函数的最小值即可得出结果.【详解】解:,,关于m的函数为,,∴,∴k的最大值为.【点睛】本题考查二次函数的最值问题,先将函数化为顶点式,即可得出最值.18、【分析】先求得点C的坐标,再根据如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或进行解答.【详解】菱形的顶点的坐标为,;过点作,如图,,,在和中,,∴,,,∴点C的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,,则点的对应点的坐标为.故答案为:.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.三、解答题(共78分)19、(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.20、(1);(2);(3)当或时,满足条件的点只有一个.【解析】(1)由角平分线定义得,在中,根据锐角三角函数正切定义即可求得长.(2)由题意易求得,,由全等三角形判定得,根据全等三角形性质得,根据相似三角形判定得,由相似三角形性质得,将代入即可求得答案.(3)由圆周角定理可得是顶角为120°的等腰三角形,再分情况讨论:①当与相切时,结合题意画出图形,过点作,并延长与交于点,连结,,设半径为,由相似三角形的判定和性质即可求得长;②当经过点时,结合题意画出图形,过点作,设半径为,在中,根据勾股定理求得,再由相似三角形的判定和性质即可求得长;③当经过点时,结合题意画出图形,此时点与点重合,且恰好在点处,由此可得长.【详解】(1)解:∵平分,,∴.在中,(2)解:易得,,.由,得,.∵,∴,∴.由,得,∴∴(3)解:∵,过,,作外接圆,圆心为,∴是顶角为120°的等腰三角形.①当与相切时,如图1,过点作,并延长与交于点,连结,设的半径则,,解得.∴,.易知,可得,则∴.②当经过点时,如图2,过点作,垂足为.设的半径,则.在中,,解得,∴易知,可得③当经过点时,如图3,此时点与点重合,且恰好在点处,可得.综上所述,当或时,满足条件的点只有一个.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.21、(1)见解析;(2)【分析】(1)连结OA,根据已知条件得到∠AOE=∠BEF,根据平行线的性质得到OA⊥AC,于是得到结论;(2)连接OF,设∠AFE=α,则∠BEF=2α,得到∠BAF=∠BEF=2α,得到∠OAF=∠BAO=α,求得∠AFO=∠OAF=α,根据全等三角形的性质得到AB=AF=5,由勾股定理得到AD==3,根据圆周角定理得到∠BAE=90°,根据相似三角形的性质即可得到结论.【详解】解(1)证明:连结OA,∴∠AOE=2∠F,∵∠BEF=2∠F,∴∠AOE=∠BEF,∴AO∥DF,∵DF⊥AC,∴OA⊥AC,∴AC为⊙O切线;(2)解:连接OF,∵∠BEF=2∠F,∴设∠AFE=α,则∠BEF=2α,∴∠BAF=∠BEF=2α,∵∠B=∠AFE=α,∴∠BAO=∠B=α,∴∠OAF=∠BAO=α,∵OA=OF,∴∠AFO=∠OAF=α,∴△ABO≌△AFO(AAS),∴AB=AF=5,∵DF=4,∴AD==3,∵BE是⊙O的直径,∴∠BAE=90°,∴∠BAE=∠FDA,∵∠B=∠AFD,∴△ABE∽△DFA,∴=,∴=,∴BE=,∴⊙O半径=.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.22、(1);(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x≤56【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y与x之间的函数关系式为:把(35,350),(55,150)代入得:由题意得:解得:∴y与x之间的函数关系式为:.(2)设销售利润为W元则W=(x﹣30)•y=(x﹣30)(﹣10x+700),W=﹣10x2+1000x﹣21000W=﹣10(x﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W=3640∴﹣10(x﹣50)2+4000=3640∴x1=44,x2=56如图所示,由图象得:当44≤x≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.23、(1);(2)3;(3).【分析】(1)利用待定系数法进行求解即可;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,先求出S△OAC=6,再根据S△BCD=S△AOC,得到S△BCD=,然后求出BC的解析式为,则可得点G的坐标为,由此可得,再根据S△BCD=S△CDG+S△BDG=,可得关于m的方程,解方程即可求得答案;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,由点D的坐标可得点N点纵坐标为±,然后分点N的纵坐标为和点N的纵坐标为两种情况分别求解;以BD为对角线时,有1种情况,此时N1点与N2点重合,根据平行四边形的对边平行且相等可求得BM1=N1D=4,继而求得OM1=8,由此即可求得答案.【详解】(1)抛物线经过点A(-2,0),B(4,0),∴,解得,∴抛物线的函数表达式为;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,∵点A的坐标为(-2,0),∴OA=2,由,得,∴点C的坐标为(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD=,设直线BC的函数表达式为,由B,C两点的坐标得,解得,∴直线BC的函数表达式为,∴点G的坐标为,∴,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD=,∴,解得(舍),,∴的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为,∴点N点纵坐标为±,当点N的纵坐标为时,如点N2,此时,解得:(舍),∴,∴;当点N的纵坐标为时,如点N3,N4,此时,解得:∴,,∴,;以BD为对角线时,有1种情况,此时N1点与N2点重合,∵,D(3,),∴N1D=4,∴BM1=N1D=4,∴OM1=OB+BM1=8,∴M1(8,0),综上,点M的坐标为:.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.24、(1)见解析;(2)【分析】(1)连接OC,交AE于点H.根据垂径定理得到OC⊥AE.根据切线的性质得到OC⊥GC,于是得到结论;
(2)根据三角函数的定义得到sin∠OCD=.连接BE.AB是⊙O的直径,解直角三角形即可得到结论.【详解】(1)证明:连接,交于点.是弧的中点,是的切线,,,;(2),,..在中,,,连接是的直径,.在中,,,在Rt△AEB中,,AB=10,.【点睛】本题考查了切线的性质,三角函数的定义,平行线的判定,正确的作出辅助线是解题的关键.25、(1)顶点坐标为(1,4),与x轴的交点坐标为(﹣1,0),(1,0),与y轴的交点坐标为(0,﹣1),作图见解析;(2)当﹣1<x<1时,y<0;当x<0或x>1时,y>﹣1.【分析】(1)利用配方法得到y=(x﹣1)2﹣4,从而得到抛物线的顶点坐标,再计算自变量为0对应的函数值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单的房屋租赁协议范文
- 工伤死亡一次性赔偿协议书
- 购车合同书范本
- 贵州省贵阳市2024年七年级上学期期中数学试题【附答案】
- 浙江省A9协作体2023-2024学年高一下学期4月期中考试数学试题2
- 浙江省丽水市2023-2024学年高一下学期期试末考试历史试题
- 工程项目管理名词解释
- 北京清华附中上地学校C21级数学基础练习八
- 交通安全教育主题班会
- 3.1农业区位因素及其变化+课件人教版(2019)+必修二+地理+高一下学期
- 部编版《道德与法治》二年级上册第9课《这些是大家的》课件(共50张课件)
- 知道智慧网课《科技伦理》章节测试答案
- 全国高中青年数学教师优质课大赛一等奖《函数的单调性》课件
- ISO9001、ISO14001、ISO45001三体系内审计划+内审检查表+内审报告
- 完美型活泼型力量型平和型
- 10以内加减法练习题大全
- 财务管理期末考试试卷及答案
- 飞机加油车压力控制原理
- 列举课件郭建湘
- 专业导论(酒店管理)教案.doc
- 开展基本草原划定工作实施方案
评论
0/150
提交评论