版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是()A.y=﹣(x﹣2)2+4 B.y=﹣(x﹣2)2﹣2C.y=﹣(x+2)2+4 D.y=﹣(x+2)2﹣22.如图,一张矩形纸片ABCD的长,宽将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:A.2:1 B.:1 C.3: D.3:23.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30° B.35° C.40° D.50°4.如图,一根电线杆垂直于地面,并用两根拉线,固定,量得,,则拉线,的长度之比()A. B. C. D.5.在△ABC中,若|cosA.45° B.60° C.75° D.105°6.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为()A. B. C. D.7.关于二次函数,下列说法错误的是()A.它的图象开口方向向上 B.它的图象顶点坐标为(0,4)C.它的图象对称轴是y轴 D.当时,y有最大值48.抛物线y=(x+2)2-3的对称轴是(
)A.直线x=2 B.直线x=-2 C.直线x=-3 D.直线x=39.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0 B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥10.主视图、左视图、俯视图分别为下列三个图形的物体是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,中,,以点为圆心的圆与相切,则的半径为________.12.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB于点M,若AB=CM=4,则⊙O的半径为_____.13.已知:如图,在中,于点,为的中点,若,,则的长是_______.14.某厂四月份生产零件50万个,已知五、六月份平均每月的增长率是20%,则第二季度共生产零件_____万个.15.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则线段ON的长为_____.16.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=_____度.17.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是_____.18.如图,为半圆的直径,点、、是半圆弧上的三个点,且,,若,,连接交于点,则的长是______.三、解答题(共66分)19.(10分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)已知点D在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;(3)在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.20.(6分)如图,中,,以为直径作半圆交与点,点为的中点,连结.(1)求证:是半圆的切线;(2)若,,求的长.21.(6分)如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.22.(8分)在△ABC中,AD、CE分别是△ABC的两条高,且AD、CE相交于点O,试找出图中相似的三角形,并选出一组给出证明过程.23.(8分)如图,双曲线经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.24.(8分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.25.(10分)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)写出D点坐标;(2)求双曲线的解析式;(3)作直线AC交y轴于点E,连结DE,求△CDE的面积.26.(10分)一玩具厂去年生产某种玩具,成本为元/件,出厂价为元/件,年销售量为万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中).用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为________元.求今年这种玩具的每件利润元与之间的函数关系式.设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=﹣x2+1向右平移2个单位长度所得的抛物线的解析式为:y=﹣(x﹣2)2+1.再向下平移3个单位长度所得抛物线的解析式为:y=﹣(x﹣2)2﹣2.故选:B.【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.2、B【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到,即,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF,
∴AF=AB=a,
∵矩形AFED与矩形ABCD相似,
∴,即,
∴a∶b=.
所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.3、C【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、D【分析】根据锐角三角函数可得:和,从而求出.【详解】解:在Rt△AOP中,,在Rt△BOP中,,∴故选D.【点睛】此题考查的是锐角三角函数,掌握锐角三角函数的定义是解决此题的关键.5、C【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得
cosA=12,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C6、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000963,这个数据用科学记数法可表示为9.63×.
故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵,∴抛物线开口向上,对称轴为直线x=0,顶点为(0,4),当x=0时,有最小值4,故A、B、C正确,D错误;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).8、B【解析】试题解析:在抛物线顶点式方程中,抛物线的对称轴方程为x=h,∴抛物线的对称轴是直线x=-2,故选B.9、D【分析】根据平面向量的性质一一判断即可.【详解】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.10、A【解析】分析:本题时给出三视图,利用空间想象力得出立体图形,可以先从主视图进行排除.解析:通过给出的主视图,只有A选项符合条件.故选A.二、填空题(每小题3分,共24分)11、【解析】试题解析:在△ABC中,∵AB=5,BC=3,AC=4,如图:设切点为D,连接CD,∵AB是C的切线,∴CD⊥AB,∴AC⋅BC=AB⋅CD,即∴的半径为故答案为:点睛:如果三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.12、2.1【分析】连接OA,由垂径定理得出AM=AB=2,设OC=OA=x,则OM=4﹣x,由勾股定理得出AM2+OM2=OA2,得出方程,解方程即可.【详解】解:连接OA,如图所示:∵CD是⊙O的直径,CD⊥AB,∴AM=AB=2,∠OMA=90°,设OC=OA=x,则OM=4﹣x,根据勾股定理得:AM2+OM2=OA2,即22+(4﹣x)2=x2,解得:x=2.1;故答案为:2.1.【点睛】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.13、【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【详解】解:∵△ABC中,AD⊥BC,∴∠ADC=90°.∵E是AC的中点,DE=5,CD=8,∴AC=2DE=1.∴AD2=AC2−CD2=12−82=2.∴AD=3.故答案为:3.【点睛】本题主要考查了直角三角形的性质,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.14、1【分析】由该厂四月份生产零件50万个及五、六月份平均每月的增长率是20%,可得出该厂五月份生产零件50×(1+20%)万个、六月份生产零件50×(1+20%)2万个,将三个月份的生产量相加即可求出结论.【详解】解:50+50×(1+20%)+50×(1+20%)2=1(万个).故答案为:1.【点睛】本题考查了列代数式以及有理数的混合运算,根据各月份零件的生产量,求出第二季度的总产量是解题的关键.15、1.【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH,MH,MB,CH,CO,然后证明△CON∽△CHM,再利用相似三角形的性质可计算出ON的长.【详解】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,MH⊥AC,MB⊥BC∴BM=MH=,∴AB=2+,∴AC=AB=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故答案为:1.【点睛】本题主要考查正方形的性质及相似三角形的判定及性质,掌握正方形的性质及相似三角形的性质是解题的关键.16、1【分析】由题意先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=1°,∴∠B=1°.故答案为:1.【点睛】本题考查旋转的性质,注意掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17、【解析】根据概率的概念,由符合条件的人数除以样本容量,可得P(在日常生活中进行垃圾分类)==.故答案为.18、【分析】连接OC,根据菱形的判定,可得四边形AODC为菱形,从而得出AC=OD,根据圆的性质可得OE=OC=AC=OA=,从而得出△AOC为等边三角形,然后根据同弧所对的圆周角是圆心角的一半,可求得∠EOC,从而得出OE平分∠AOC,根据三线合一和锐角三角函数即可求出OF,从而求出EF.【详解】解:连接OC∵,,OA=OD∴四边形AODC为菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC为等边三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案为:.【点睛】此题考查的是菱形的判定及性质、圆的基本性质、等边三角形的判定及性质和解直角三角形,掌握菱形的判定及性质、同弧所对的圆周角是圆心角的一半、等边三角形的判定及性质和用锐角三角函数解直角三角形是解决此题的关键.三、解答题(共66分)19、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.【详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得,解得∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为∵直线CP′过点C,∴直线CP′解析式为,∴P′坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0).【点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.20、(1)见解析;(2)1.【分析】(1)连接OD,OE,BD,证△OBE≌△ODE(SSS),得∠ODE=∠ABC=90°;(2)证△DEC为等边三角形,得DC=DE=2.【详解】(1)证明:连接OD,OE,BD,
∵AB为圆O的直径,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E为斜边BC的中点,
∴DE=BE,
在△OBE和△ODE中,
,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
则DE为圆O的切线;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=10°,DE=CE,
∴△DEC为等边三角形,即DC=DE=2,
则AD=AC-DC=1.【点睛】考核知识点:切线的判定和性质.21、(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵∥,∴∵平分∴,∴∴又∵∴又∵∥,∴四边形是平行四边形又∵∴是菱形(2)解:∵四边形是菱形,对角线、交于点.∴.,,∴.在中,.∴.∵,∴.在中,.为中点.∴.点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.22、△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA,证明见解析【分析】由题意直接根据相似三角形的判定方法进行分析即可得出答案.【详解】解:图中相似的三角形有:△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA.∵AD、CE分别是△ABC的两条高,∴∠ADB=∠CDA=∠CEB=∠AEC=90°,∴∠B+∠BCE=90°,∠B+∠BAD=90°,∴∠BAD=∠BCE,∵∠EBC=∠ABD,∴△ABD∽CBE.【点睛】本题考查相似三角形的判定.注意掌握相似三角形的判定以及数形结合思想的应用.23、(1)m=2;(2)k的取值范围是﹣2<k<0.【解析】(1)将点P坐标代入,利用待定系数法求解即可;(2)由题意可得关于x的一元二次方程,根据有两个不同的交点,可得△=(﹣4)2﹣4k•(﹣2)>0,求解即可.【详解】(1)∵双曲线经过点P(2,1),∴m=2×1=2;(2)∵双曲线与直线y=kx﹣4(k<0)有两个不同的交点,∴,整理得:kx2﹣4x﹣2=0,∴△=(﹣4)2﹣4k•(﹣2)>0,∴k>﹣2,∴k的取值范围是﹣2<k<0.【点睛】本题考查了反比例函数与一次函数综合,涉及了待定系数法、一元二次方程根的判别式等,熟练掌握相关知识是解题的关键.24、(1)72,图详见解析;(2).【分析】(1)先画出条形统计图,再求出圆心角即可;(2)先画出树状图,再求出概率即可.【详解】(1)条形统计图为;;扇形统计图中“优秀”所对应的扇形的圆心角是(1﹣15%﹣25%﹣40%)×360°=72°,故答案为:72;(2)画树状图:由树状图可知:所有等可能的结果有6种,其中符合条件的有2种,所有P(甲、丙)==,即选中的两名同学恰好是甲、丙的概率是.【点睛】本题考查了树状图、条形统计图和扇形统计图等知识点,能画出条形图和树状图是解此题的关键.25、(1)点D的坐标是(1,2);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年茶叶店租赁合同范本6篇
- 2025年度网络安全防护软件设计与实施合同3篇
- 2024铁路房屋买卖合同1
- 2024年精制木门安装承包合同
- 2025年度教育设施建筑工程合同终止及后续教学管理协议3篇
- 宠物训练行业发展趋势分析报告
- 2024万能房屋租赁合同包含租客信用记录更新服务3篇
- 2024年股权转让合同:股份交易与变更
- 2025年度精装修商品房认购协议书模板
- 2024年酒店式公寓代理出租及维护合同3篇
- 2023年辽宁省交通高等专科学校高职单招(英语)试题库含答案解析
- GB/T 36127-2018玉雕制品工艺质量评价
- GB/T 304.3-2002关节轴承配合
- GB/T 23445-2009聚合物水泥防水涂料
- 漆画漆艺 第三章
- CB/T 615-1995船底吸入格栅
- (完整版)100道凑十法练习题
- 光伏逆变器一课件
- 2023年上海师范大学辅导员招聘考试笔试题库及答案解析
- 严重精神障碍患者发病报告卡
- 《基础马来语》课程标准(高职)
评论
0/150
提交评论