版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为()A.3 B.6 C.7 D.142.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)3.一元二次方程x2-x=0的根是()A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-14.如图,平行四边形的顶点,在轴上,顶点在上,顶点在上,则平行四边形的面积是()A. B. C. D.5.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.6.已知抛物线,则下列说法正确的是()A.抛物线开口向下 B.抛物线的对称轴是直线C.当时,的最大值为 D.抛物线与轴的交点为7.如下图形中既是中心对称图形,又是轴对称图形的是()A. B. C. D.8.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的().A.甲 B.乙 C.丙 D.丁9.抛物线经过平移得到抛物线,平移的方法是()A.向左平移1个单位,再向下平移2个单位B.向右平移1个单位,再向下平移2个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向上平移2个单位10.若,面积之比为,则相似比为()A. B. C. D.二、填空题(每小题3分,共24分)11.数据3000,2998,3002,2999,3001的方差为__________.12.在一个不透(明的袋子中装有除了颜色外其余均相同的个小球,其中红球个,黑球个,若再放入个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则的值为__________.13.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P在__________.14.如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为________.15.如图,在边长为2的正方形ABCD中,以点D为圆心,AD长为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S1﹣S2的值为_____.(结果保留π)16.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.17.已知二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b<0;③a﹣b+c<0;④a+c>0;⑤b2>4ac;⑥当x>1时,y随x的增大而减小.其中正确的说法有_____(写出正确说法的序号)18.反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________.三、解答题(共66分)19.(10分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式≥k2x+b的解.20.(6分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.21.(6分)用适当的方法解下方程:22.(8分)已知二次函数y=ax2+bx﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x在什么范围内,y随x增大而减小?该函数有最大值还是有最小值?求出这个最值.23.(8分)如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.(1)用含t的代数式分别表示点E和点F的坐标;(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值;(3)当t=2时,求O′点在坐标.24.(8分)某市计划建设一项水利工程,工程需要运送的土石方总量为米3,某运输公司承办了这项工程运送土石方的任务.(1)完成运送任务所需的时间(单位:天)与运输公司平均每天的工作量(单位:米3/天)之间具有怎样的函数关系?(2)已知这个运输公司现有50辆卡车,每天最多可运送土石方米3,则该公司完成全部运输任务最快需要多长时间?(3)运输公司连续工作30天后,天气预报说两周后会有大暴雨,公司决定10日内把剩余的土石方运完,平均每天至少增加多少辆卡车?25.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?26.(10分)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)
参考答案一、选择题(每小题3分,共30分)1、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,【详解】解:根据题意列出方程,解得:x=6,故选B.考点:利用频率估计概率.2、B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.3、C【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.4、D【分析】先过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,再根据反比例函数系数k的几何意义,求得△ABE的面积=△COD的面积相等=|k2|,△AOE的面积=△CBD的面积相等=|k1|,最后计算平行四边形的面积.【详解】解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE与S△COD相等,又∵点C在的图象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故选D.【点睛】本题主要考查了反比例函数系数k的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.5、B【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率.【详解】根据题意可得所有的线段有15条,长度为的线段有AE、AC、FD、FB、EC、BD共6条,则P(长度为的线段)=.故选:B【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.6、D【分析】根据二次函数的性质对A、B进行判断;根据二次函数图象上点的坐标特征对C进行判断;利用抛物线与轴交点坐标对D进行判断.【详解】A、a=1>0,则抛物线的开口向上,所以A选项错误;B、抛物线的对称轴为直线x=1,所以B选项错误;C、当x=1时,有最小值为,所以C选项错误;D、当x=0时,y=-3,故抛物线与轴的交点为,所以D选项正确.故选:D.【点睛】本题考查了二次函数的性质,主要涉及开口方向,对称轴,与y轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键.7、B【解析】根据中心对称图形的定义以及轴对称图形的定义进行判断即可得出答案.【详解】A.是轴对称图形,不是中心对称图形,故本选项错误;B.是轴对称图形,也是中心对称图形,故本选项正确;C.是轴对称图形,不是中心对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的定义,根据定义得出图形形状是解决问题的关键.8、A【分析】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【详解】解:根据题意,△ABC的三边之比为要使△ABC∽△DEF,则△DEF的三边之比也应为经计算只有甲点合适,
故选:A.
【点睛】本题考查了相似三角形的判定定理:
(1)两角对应相等的两个三角形相似.
(2)两边对应成比例且夹角相等的两个三角形相似.
(3)三边对应成比例的两个三角形相似.9、D【解析】∵抛物线y=-3(x+1)2-2的顶点坐标为(-1,-2),平移后抛物线y=-3x2的顶点坐标为(0,0),∴平移方法为:向右平移1个单位,再向上平移2个单位.故选D.10、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,
∴它们的相似比为3:1.
故选:C.【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.二、填空题(每小题3分,共24分)11、2【分析】先根据平均数的计算公式求出平均数,再根据方差公式计算即可.【详解】数据3000,2998,3002,2999,3001的平均数是:,方差是:,故答案为:【点睛】本题考查了方差的定义,熟记方差的计算顺序:先差、再方、再平均.12、1【分析】由概率=所求情况数与总情况数之比,根据随机摸出一个球是黑球的概率等于可得方程,继而求得答案.【详解】根据题意得:,
解得:.
故答案为:1.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13、⊙O上或⊙O内【分析】直接利用反证法的基本步骤得出答案.【详解】解:用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,
首先应假设:若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O上或⊙O内.
故答案为:在⊙O上或⊙O内.【点睛】此题主要考查了反证法,正确掌握反证法的解题方法是解题关键.14、【分析】根据旋转的性质可知△ACC1为等边三角形,进而得出BC1=CC1=AC1=2,△ADC1是含20°的直角三角形,得到DC1的长,利用线段的和差即可得出结论.【详解】根据旋转的性质可知:AC=AC1,∠CAC1=60°,B1C1=BC,∠B1C1A=∠C,∴△ACC1为等边三角形,∴∠AC1C=∠C=60°,CC1=AC1.∵C1是BC的中点,∴BC1=CC1=AC1=2,∴∠B=∠C1AB=20°.∵∠B1C1A=∠C=60°,∴∠ADC1=180°-(∠C1AB+∠B1C1A)=180°-(20°+60°)=90°,∴DC1=AC1=1,∴B1D=B1C1-DC1=4-1=2.故答案为:2.【点睛】本题考查了旋转的性质以及直角三角形的性质,得出△ADC1是含20°的直角三角形是解答本题的关键.15、π【分析】如图,设图中③的面积为S1.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S1.由题意:,可得S1﹣S2=π,故答案为π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.16、(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17、②④⑤⑥【分析】①利用抛物线开口方向得到a<0,利用抛物线的对称轴在y轴的右侧得到b>0,利用抛物线与y轴的交点在x轴上方得到c>0,即可判断;②利用0<﹣<1得到b<﹣2a,则可对其进行判断;③利用x=﹣1时y的正负可对a﹣b+c进行判断;④利用a+c>b>0可对其进行判断;⑤根据抛物线与x轴交点的个数即可判断;⑥根据二次函数的图象和性质即可得出答案.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴a、b异号,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线的对称轴为直线x=﹣,∴0<﹣<1,∴b<﹣2a,即2a+b<0,所以②正确;∵x=﹣1时,y>0,∴a﹣b+c>0,所以③错误;∴a+c>b,而b>0,∴a+c>0,所以④正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,所以⑤正确;∵抛物线开口向下,在对称轴的右侧y随x的增大而减下,∴当x>1时,y随x的增大而减小,所以⑥正确.故答案为:②④⑤⑥.【点睛】本题主要考查二次函数的图象及性质,掌握二次函数的图象及性质并数形结合是解题的关键.18、没有实数根【解析】分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出1xy>11,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.详解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,∴a>-4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于11,∴1xy>11,即a+4>6,a>1∴a>1.∴△=(-1)1-4(a-1)×=1-a<0,∴关于x的方程(a-1)x1-x+=0没有实数根.故答案为:没有实数根.点睛:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.三、解答题(共66分)19、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.【解析】(1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;(1)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;(3)根据两函数图象的上下位置关系,即可得出不等式的解集.【详解】(1)∵反比例函数y=与一次函数y=k1x+b的图象交于点A(1,4),B(﹣4,m),∴k1=1×4=8,m==﹣1,∴点B的坐标为(﹣4,﹣1).将A(1,4)、B(﹣4,﹣1)代入y1=k1x+b中,,解得:,∴k1=8,k1=1,b=1.(1)当x=0时,y1=x+1=1,∴直线AB与y轴的交点坐标为(0,1),∴S△AOB=×1×4+×1×1=2.(3)观察函数图象可知:不等式≥k1x+b的解集为x≤﹣4或0<x≤1.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(1)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.20、证明见解析.【解析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.【详解】∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.21、x=3或1【分析】移项,因式分解得到,再求解.【详解】解:,∴,∴,∴,∴x-3=0或x-1=0,∴x=3或1.【点睛】本题考查了一元二次方程,解题的关键是根据方程的形式选择因式分解法.22、(1)y=x2﹣2x﹣3;(2)当x<1时,y随x增大而减小,该函数有最小值,最小值为﹣1.【分析】(1)将(1,﹣1)和(﹣1,0)代入解析式中,即可求出结论;(2)将二次函数的表达式转化为顶点式,然后根据二次函数的图象及性质即可求出结论.【详解】(1)根据题意得,解得,所以抛物线解析式为y=x2﹣2x﹣3;(2)∵y=(x﹣1)2﹣1,∴抛物线的对称轴为直线x=1,顶点坐标为(1,﹣1),∵a>0,∴当x<1时,y随x增大而减小,该函数有最小值,最小值为﹣1.【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、二次函数的图象及性质是解决此题的关键.23、(1)E(3t,0),F(12,10﹣2t);(2)t=;(3)O'(,)【分析】(1)直接根据路程等于速度乘以时间,即可得出结论;(2)先判断出∠DOE=∠EAF=90°,再分两种情况,用相似三角形得出比例式,建立方程求解,最后判断即可得出结论;(3)先根据勾股定理求出DE,再利用三角形的面积求出OG,进而求出OO',再判断出△OHO'∽△EOD,得出比例式建立方程求解即可得出结论.【详解】解:(1)∵BA⊥x轴,CB⊥y轴,B(12,10),∴AB=10,由运动知,OD=t,OE=3t,BF=2t(0≤t≤4),∴AF=10﹣2t,∴E(3t,0),F(12,10﹣2t);(2)由(1)知,OD=t,OE=3t,AF=10﹣2t,∴AE=12﹣3t,∵BA⊥x轴,∴∠OAB=90°=∠AOC,∵△ODE与以点A,E,F为顶点的三角形相似,∴△DOE∽△EAF或△DOE∽△FAE,①当△DOE∽△EAF时,,∴,∴t=,②当△DOE∽△FAE时,,∴,∴t=6(舍),即:当△ODE与以点A,E,F为顶点的三角形相似时,t=秒;(3)如图,当t=2时,OD=2,OE=6,在Rt△DOE中,根据勾股定理得,DE=2,连接OO'交DE于G,∴OO'=2OG,OO⊥DE,∴S△DOE=OD•OE=DE•OG,∴OG===,∴OO'=2OG=,∵∠AOC=90°,∴∠HOO'+∠AOO'=90°,∵OO'⊥DE,∴∠OED+∠AOO'=90°,∴∠HOO'=∠OED,过点O'作O'H⊥y轴于H,∴∠OHO'=90°=∠DOE,∴△OHO'∽△EOD,∴,∴,∴OH=,O'H=,∴O'(,).【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及相似三角形的性质.24、(1);(2)该公司完成全部运输任务最快需要50天;(3)每天至少增加50辆卡车.【分析】(1)根据“平均每天的工作量×工作时间=工作总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泥塑工艺品市场发展预测和趋势分析
- 2024年度PE管材批量采购价格谈判合同
- 2024年度广告代理合同:某品牌委托广告公司进行广告代理
- 2024年度挖掘机广告投放合同
- 2024年度建筑施工技术咨询合同
- 通话筒市场需求与消费特点分析
- 运载工具用玻璃窗项目评价分析报告
- 2024年度水泥行业广告宣传合同
- 2024年度智能移动办公设备采购合同
- 2024年度民间房产抵押借款合同
- 有经营才有结果必须开个人酒会月日
- 《新疆维吾尔自治区去极端化条例》(全文)及教案
- GB/T 32722-2016土壤质量土壤样品长期和短期保存指南
- GB 5606.5-2005卷烟第5部分:主流烟气
- 幼儿园食堂安全知识培训测试题附答案
- 《第一单元 行进之歌-欣赏-☆中国人民解放军进行曲课件》初中音乐人音版七年级下册221
- 幼儿园保育教育质量指南评估指标考核试题及答案
- 呼吸道传染病的隔离和预防课件
- 小学语文奥林匹克竞赛考试试卷
- 台签模板(可直接套用)
- 出国留学给寄宿家庭写的自荐信模板
评论
0/150
提交评论