山东省枣庄市市中学区五校联考2025届九上数学期末质量跟踪监视试题含解析_第1页
山东省枣庄市市中学区五校联考2025届九上数学期末质量跟踪监视试题含解析_第2页
山东省枣庄市市中学区五校联考2025届九上数学期末质量跟踪监视试题含解析_第3页
山东省枣庄市市中学区五校联考2025届九上数学期末质量跟踪监视试题含解析_第4页
山东省枣庄市市中学区五校联考2025届九上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄市市中学区五校联考2025届九上数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠02.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27° B.34° C.36° D.54°3.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球 B.摸出的是3个黑球C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球4.下列成语中描述的事件必然发生的是()A.水中捞月 B.日出东方 C.守株待兔 D.拔苗助长5.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个 B.2个 C.3个 D.4个6.在正方形网格中,如图放置,则()A. B. C. D.7.如图,抛物线y=ax2+bx+c交x轴分别于点A(﹣3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C.下列结论①2a﹣b=0;②a+b+c=0;③当m≠﹣1时,a﹣b>am2+bm;④当△ABC是等腰直角三角形时,a=;⑤若D(0,3),则抛物线的对称轴直线x=﹣1上的动点P与B、D两点围成的△PBD周长最小值为3,其中,正确的个数为()A.2个 B.3个 C.4个 D.5个8.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A.16 B.20 C.24 D.289.在中,,若已知,则()A. B. C. D.10.如图,在△ABC中,点D在BC上一点,下列条件中,能使△ABC与△DAC相似的是()

A.∠BAD=∠C B.∠BAC=∠BDA C.AB2=BD∙BC D.AC2=CD∙CB二、填空题(每小题3分,共24分)11.已知关于x的方程有两个实数根,则实数k的取值范围为____________.12.如图三角形ABC的两条高线BD,CE相交于点F,已知∠ABC等于60度,,CF=EF,则三角形ABC的面积为________(用含的代数式表示).13.在△ABC中,∠ABC=30°,AB=,AC=1,则∠ACB的度数为____________.14.如图,在四边形中,,,则的度数为______.15.如图,在中,,于点D,于点E,F、G分别是BC、DE的中点,若,则FG的长度为__________.16.如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为______.17.如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积=.18.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=_____.三、解答题(共66分)19.(10分)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)请比较①摸出的2个球颜色相同②摸出的2个球中至少有1个白球,这两种情况哪个概率大,请说明理由20.(6分)如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.21.(6分)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,(1)求线段OD的长度;(2)求弦AB的长度.22.(8分)墙壁及淋浴花洒截面如图所示,已知花洒底座与地面的距离为,花洒的长为,与墙壁的夹角为43°.求花洒顶端到地面的距离(结果精确到)(参考数据:,,)23.(8分)如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=______.24.(8分)某商场经销种高档水果,原价每千克元,连续两次降价后每千克元,若每次下降的百分率相同求每次下降的百分率25.(10分)如图,相交于点,连结.(1)求证:;(2)直接回答与是不是位似图形?(3)若,求的长.26.(10分)如图,在中,,点是边上的动点(不与重合),点在边上,并且满足.(1)求证:;(2)若的长为,请用含的代数式表示的长;(3)当(2)中的最短时,求的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.2、C【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故选C.考点:切线的性质.3、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.4、B【分析】根据事件发生的可能性大小判断.【详解】解:A、水中捞月,是不可能事件;B、日出东方,是必然事件;C、守株待兔,是随机事件;D、拔苗助长,是不可能事件;故选B.【点睛】本题主要考查随机事件和必然事件的概念,解决本题的关键是要熟练掌握随机事件和必然事件的概念.5、C【解析】根据黄金分割的概念和黄金比值进行解答即可得.【详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=AB,故①正确;由AC=AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【点睛】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为是解题的关键.6、B【分析】依据正切函数的定义:正切函数是直角三角形中,对边与邻边的比值叫做正切.由中,,求解可得.【详解】解:在中,,,则,故选:B.【点睛】本题主要考查解直角三角形,解题的关键是掌握正切函数的定义.7、D【分析】把A、B两点坐标代入抛物线的解析式并整理即可判断①②;根据抛物线的顶点和最值即可判断③;求出当△ABC是等腰直角三角形时点C的坐标,进而可求得此时a的值,于是可判断④;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.【详解】解:把A(﹣3,0),B(1,0)代入y=ax2+bx+c得到,消去c得到2a﹣b=0,故①②正确;∵抛物线的对称轴是直线x=﹣1,开口向下,∴x=﹣1时,y有最大值,最大值=a﹣b+c,∵m≠﹣1,∴a﹣b+c>am2+bm+c,∴a﹣b>am2+bm,故③正确;当△ABC是等腰直角三角形时,C(﹣1,2),可设抛物线的解析式为y=a(x+1)2+2,把(1,0)代入解得a=﹣,故④正确,如图,连接AD交抛物线的对称轴于P,连接PB,则此时△BDP的周长最小,最小值=PD+PB+BD=PD+PA+BD=AD+BD,∵AD==3,BD==,∴△PBD周长最小值为3,故⑤正确.故选D.【点睛】本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.8、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】根据题意知=20%,解得a=20,经检验:a=20是原分式方程的解,故选B.【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据红球的频率得到相应的等量关系.9、B【分析】根据题意利用三角函数的定义,定义成三角形的边的比值,进行分析计算即可求解.【详解】解:在中,,∵,设BC=3x,则AC=4x,根据勾股定理可得:,∴.故选:B.【点睛】本题主要考查三角函数的定义,注意掌握求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.10、D【解析】根据相似三角形的判定即可.【详解】△ABC与△DAC有一个公共角,即∠ACB=∠DCA,要使△ABC与△DAC相似,则还需一组角对应相等,或这组相等角的两边对应成比例即可,观察四个选项可知,选项D中的AC即ACCD=CBAC,正好是故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定是解题关键.二、填空题(每小题3分,共24分)11、【分析】根据一元二次方程有两个实数根,可知,列不等式即可求出k的取值范围.【详解】∵关于x的方程有两个实数根∴解得故答案为:.【点睛】本题考查根据一元二次方程根的情况求参数,解题的关键是掌握判别式与一元二次方程根的情况之间的关系.12、【分析】连接AF延长AF交BC于G.设EF=CF=x,连接AF延长AF交BC于G.设EF=CF=x,因为BD、CE是高,所以AG⊥BC,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt△AEF中,由EF=x,∠EAF=30°,可得在Rt△BCE中,由EC=2x,∠CBE=60°可得.由AE+BE=AB可得,代入即可解决问题.【详解】解:连接延长交于,设==,是高,,,,,在中,,,,在中,,,,,,,.【点睛】本题考查了勾股定理,含30度角的直角三角形,掌握勾股定理和30°直角三角形是解题的关键.13、60°或120°.【分析】作AD⊥BC于D,先在Rt△ABD中求出AD的长,解直角三角形求出∠ACD,即可求出答案.【详解】如图,作AD⊥BC于D,如图1,在Rt△ABD中,∠ABC=30°,AB=,AC=1,∴AD=AB=,在Rt△ACD中,sinC=,∴∠C=60°,即∠ACB=60°,同理如图2,同理可得∠ACD=60°,∴∠ACB=120°.故答案为60°或120°.【点睛】此题主要考查三角函数的应用,解题的关键是根据题意分情况作出图形求解.14、18°【分析】根据题意可知A、B、C、D四点共圆,由余角性质求出∠DBC的度数,再由同弧所对的圆周角相等,即为所求.【详解】解:∵在四边形中,,∴A、B、C、D四点在同一个圆上,∵∠ABC=90°,,∴∠CBD=18°,∴∠CAD=∠CBD=18°故答案为:18°【点睛】本题考查的是四点共圆、互为余角的概念和同圆中同弧所对的圆周角相等.15、1【分析】连接EF、DF,根据直角三角形的性质得到EF=BC=20,得到FE=FD,根据等腰三角形的性质得到FG⊥DE,GE=GD=DE=12,根据勾股定理计算即可.【详解】解:连接EF、DF,

∵BD⊥AC,F为BC的中点,

∴DF=BC=20,

同理,EF=BC=20,

∴FE=FD,又G为DE的中点,

∴FG⊥DE,GE=GD=DE=12,由勾股定理得,FG==1,故答案为:1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16、(6,0)【详解】解:过点P作PM⊥AB于M,则M的坐标是(4,0)∴MB=MA=4-2=2,∴点B的坐标为(6,0)17、1.【分析】首先连接DF,由四边形ABCD是正方形,可得△BFN∽△DAN,又由E,F分别是AB,BC的中点,可得=2,△ADE≌△BAF(SAS),然后根据相似三角形的性质与勾股定理,可求得AN,MN的长,即可得MN:AF的值,再利用同高三角形的面积关系,求得△DMN的面积.【详解】连接DF,

∵四边形ABCD是正方形,

∴AD∥BC,AD=BC=,

∴△BFN∽△DAN,

∴,

∵F是BC的中点,

∴,

∴AN=2NF,

∴,

在Rt△ABF中,

∴,

∵E,F分别是AB,BC的中点,AD=AB=BC,

∴,

∵∠DAE=∠ABF=90°,

在△ADE与△BAF中,

∴△ADE≌△BAF(SAS),

∴∠AED=∠AFB,

∴∠AME=110°-∠BAF-∠AED=110°-∠BAF-∠AFB=90°.

∴,

∴,

∴.

又,

∴.

故答案为:1.18、1.【分析】求代数式的值,一元二次方程的解,一元二次方程根与系数的关系.【详解】解:∵m、n是一元二次方程x2+2x-7=0的两个根,∴m2+2m-7=0,即m2+2m=7;m+n=-2.∴m2+1m+n=(m2+2m)+(m+n)=7-2=1.故答案为:1三、解答题(共66分)19、(1)摸出的2个球都是白球的概率为;(2)概率最大的是摸岀的2个球中至少有1个白球.理由见解析.【分析】(1)先画树状图展示所以6种等可能的结果,其中摸出的2个球都是白球的有2种结果,然后根据概率定义求解.(2)根据树状图可知:共有6种等可能的结果,其中摸出的2个球颜色相同的有3种结果,摸出的2个球中至少有1个白球的有5种结果,根据概率公式分别计算出各自的概率,再比较大小即可.【详解】(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为;(2)∵摸出的2个球颜色相同概率为、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸岀的2个球中至少有1个白球.【点睛】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出,再从中选出符合事件A或B的结果数目,求出概率.20、(1)证明见解析;(2)S阴=.【分析】(1)只要证明∠E=∠D,即可推出CD=CE;

(2)根据S阴=S扇形OBC-S△OBC计算即可解决问题;【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∵DC=BC,∴AD=AB,∴∠D=∠ABC,∵∠E=∠ABC,∴∠E=∠D,∴CD=CE.(2)解:由(1)可知:∠ABC=∠E=30°,∠ACB=90°,∴∠CAB=60°,AB=2AC=4,在Rt△ABC中,由勾股定理得到BC=2,连接OC,则∠COB=120°,∴S阴=S扇形OBC﹣S△OBC=.【点睛】考查扇形的面积,垂径定理,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)OD=4;(2)弦AB的长是1.【分析】(1)OD=OC-CD,即可得出结果;(2)连接AO,由垂径定理得出AB=2AD,由勾股定理求出AD,即可得出结果.【详解】(1)∵半径是5,∴OC=5,∵CD=1,∴OD=OC﹣CD=5﹣1=4;(2)连接AO,如图所示:∵OC⊥AB,∴AB=2AD,根据勾股定理:AD=,∴AB=3×2=1,因此弦AB的长是1.【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理,由勾股定理求出AD是解决问题(2)的关键.22、约为。【解析】过C作CF⊥AB于F,于是得到∠AFC=90°,解直角三角形即可得到结论.【详解】解:如图,过点作于点,则,在中,,∵,∴,∴,因此,花洒顶端到地面的距离约为。【点睛】本题考查解直角三角形,解题的关键是正确理解题意以及灵活运用锐角三角函数的定义,本题属于中等题型.23、18°【分析】连接,根据圆周角定理可得出的度数,再由直角三角形的性质得,根据三角形外角的性质即可得出结论.【详解】解:连接,点是斜边的中点是的外角故答案为:.【点睛】本题考查的是圆周角定理,根据题意作辅助线,构造出圆周角是解答此题的关键.24、每次下降的百分率为20%【分析】设每次下降的百分率为a,然后根据题意列出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论