版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列运算中,结果正确的是()A. B. C. D.2.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A.30 B.30﹣30 C.30 D.303.如图,在平面直角坐标系中,函数与的图像相交于,两点,过点作轴的平行线,交函数的图像于点,连接,交轴于点,则的面积为()A. B. C.2 D.4.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.已知点在抛物线上,则下列结论正确的是()A. B. C. D.6.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40° B.50° C.80° D.100°7.如图,四边形ABCD是正方形,以BC为底边向正方形外部作等腰直角三角形BCE,连接AE,分别交BD,BC于点F,G,则下列结论:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正确的有().A.①③ B.②④ C.①② D.③④8.已知⊙O的半径是4,OP=5,则点P与⊙O的位置关系是()A.点P在圆上 B.点P在圆内 C.点P在圆外 D.不能确定9.下面的函数是反比例函数的是()A. B. C. D.10.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将1010减去它的,再减去余下的,再减去余下的,再减去余下的,……,依此类推,直到最后减去余下的,最后的结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x、y,多项式的值不小于1.其中正确的个数是()A.1 B.1 C.3 D.4二、填空题(每小题3分,共24分)11.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为_____.12.如图,某水坝的坡比为,坡长为米,则该水坝的高度为__________米.13.已知P是线段AB的黄金分割点,PA>PB,AB=2cm,则PA为___cm.14.已知矩形ABCD,AB=3,AD=5,以点A为圆心,4为半径作圆,则点C与圆A的位置关系为__________.15.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)16.若△ABC∽△DEF,,且相似比为1:2,则△ABC与△DEF面积比_____________.17.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.18..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,(1)画出关于轴对称的,并写出点的坐标;(2)画出绕原点顺时针方向旋转后得到的,并写出点的坐标;(3)将平移得到,使点的对应点是,点的对应点时,点的对应点是,在坐标系中画出,并写出点,的坐标.20.(6分)已知,反比例函数的图象经过点M(2,a﹣1)和N(﹣2,7+2a),求这个反比例函数解析式.21.(6分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.1.tan18°≈0.32,sin36°≈0.2.cos36°≈0.81,tan36°≈0.73)22.(8分)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.23.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.24.(8分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().25.(10分)墙壁及淋浴花洒截面如图所示,已知花洒底座与地面的距离为,花洒的长为,与墙壁的夹角为43°.求花洒顶端到地面的距离(结果精确到)(参考数据:,,)26.(10分)化简:
参考答案一、选择题(每小题3分,共30分)1、C【解析】A:完全平方公式:,据此判断即可B:幂的乘方,底数不变,指数相乘,据此判断即可C:幂的乘方,底数不变,指数相乘D:同底数幂相除,底数不变指数相减【详解】选项A不正确;选项B不正确;选项C正确选项D不正确.故选:C【点睛】此题考查幂的乘方,完全平方公式,同底数幂的除法,掌握运算法则是解题关键2、B【分析】在Rt△BCD中,解直角三角形,可求得CD的长,即求得甲的高度,过A作AF⊥CD于点F,在Rt△ADF中解直角三角形可求得DF,则可求得CF的长,即可求得乙的高度.【详解】解:如图,过A作AF⊥CD于点F,
在Rt△BCD中,∠DBC=60°,BC=30m,
∵tan∠DBC=,
∴CD=BC•tan60°=30m,
∴甲建筑物的高度为30m;
在Rt△AFD中,∠DAF=45°,
∴DF=AF=BC=30m,
∴AB=CF=CD-DF=(30-30)m,
∴乙建筑物的高度为(30-30)m.
故选B.【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,构造直角三角形,利用特殊角求得相应线段的长是解题的关键.3、B【分析】先确定A、B两点坐标,然后再确定点C坐标,从而可求△ABC的面积,再根据三角形中位线的性质可知答案.【详解】∵函数与的图像相交于,两点∴联立解得∴点A、B坐标分别是∵过点作轴的平行线,交函数的图像于点∴把代入到中得,解得∴点C的坐标为∴∵OA=OB,OE∥AC∴OE是△ABC的中位线∴故答案选B.【点睛】本题是一道综合题,考查了一次函数与反比例函数和三角形中位线性质,能够充分调动所学知识是解题的关键.4、B【解析】试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.考点:1.中心对称图形;2.轴对称图形.5、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A【点睛】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况6、A【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.7、B【解析】连接AC,交BD于O,过点E作EH⊥BC于H,由正方形的性质及等腰直角三角形的性质可得∠ADF=∠ABD=∠BCE=∠CBE=45°,可得∠ABE=135°,根据外角性质可得∠AFD=∠FAB+∠ABF>45°,利用平角定义可得∠AFB<135°,即可证明∠AFB≠∠ABE,可对①进行判断;由EH⊥BC可证明EH//AB,根据平行线的性质可得∠HEG=∠FAB,根据角的和差关系可证明∠DAF=∠CEG,即可证明△ADF∽△GCE;可对②进行判断,由EH//AB可得△HEG∽△BAG,根据相似三角形的性质即可得出BG=2HG,根据等腰直角三角形性质可得CH=BH,进而可得CG=2BG,可对③进行判断;根据正方形的性质可得OA=BE,∠AOF=∠FBE=90°,利用AAS可证明△AOF≌△EBF,可得AF=EF,可对④进行判断;综上即可得答案.【详解】如图,连接AC,交BD于O,过点E作EH⊥BC于H,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠ADF=∠ABD=∠BCE=∠CBE=45°,∴∠ABE=135°,∵∠AFD=∠BAF+∠ABF=∠BAF+45°>45°,∴∠AFB=180°-∠AFD<135°,∴∠AFB≠∠ABE,∴△AFB与△ABE不相似,故①错误,∵EH⊥BC,∠ABC=90°,∴EH//AB,∴∠HEG=∠FAB,∴∠AFD=∠FAB+∠ABD=45°+∠HEG=∠CEG,又∵∠ADB=∠GCE=45°,∴△ADF∽△GCE,故②正确,∵EH//AB,∴△HEG∽△BAG,∴,∵△BCE是等腰直角三角形,∴EH=CH=BH=BC=AB,∴=,即BG=2HG,∴CH=BH=3HG,∴CG=CH+HG=4HG,∴CG=2BG,故③错误,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠AOF=90°,∠FBE=∠DBC+∠CBE=45°+45°=90°,OA=AB,BE=BC,∴∠AOF=∠FBE,OA=BE,在△AOF和△EBF中,,∴△AOF≌△EBF,∴AF=EF,故④正确,综上所述:正确的结论有②④,故选:B.【点睛】本题考查正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握相关判定定理及性质是解题关键.8、C【分析】根据“点到圆心的距离大于半径,则点在圆外”即可解答.【详解】解:∵⊙O的半径是4,OP=5,5>4即点到圆心的距离大于半径,∴点P在圆外,故答案选C.【点睛】本题考查了点与圆的位置关系,通过比较点到圆心的距离与半径的大小确定点与圆的位置关系.9、A【解析】一般地,如果两个变量x、y之间的关系可以表示成y=或y=kx-1(k为常数,k≠0)的形式,那么称y是x的反比例函数,据此进行求解即可.【详解】解:A、是反比例函数,正确;
B、是二次函数,错误;
C、是正比例函数,错误;
D、是一次函数,错误.
故选:A.【点睛】本题考查了反比例函数的识别,容易出现的错误是把当成反比例函数,要注意对反比例函数形式的认识.10、C【分析】画图可判断①;将②转化为算式的形式,求解判断;③是用频率估计概率的考查;④中配成平方的形式分析可得.【详解】如下图,∠1=∠1,∠1+∠3=180°,即两边都平行的角,可能相等,也可能互补,①错误;②可用算式表示为:,正确;实验次数越多,则频率越接近概率,③正确;∵≥0,≥0∴≥1,④正确故选:C【点睛】本题考查平行的性质、有理数的计算、频率与概率的关系、利用配方法求最值问题,注意②中,我们要将题干文字转化为算式分析.二、填空题(每小题3分,共24分)11、-1.【解析】分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.
详解:把x=0代入方程得:
|a|-1=0,
∴a=±1,
∵a-1≠0,
∴a=-1.
故选A.
点睛:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项.12、【分析】根据坡度的定义,可得,从而得∠A=30°,进而即可求解.【详解】∵水坝的坡比为,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵为米,∴为1米.故答案是:1.【点睛】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键.13、【分析】把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割,其比值是【详解】∵P为线段AB的黄金分割点,且PA>PB,AB=2cm,∴故答案为.【点睛】分析题意可知,本题主要考查了黄金分割,弄清楚黄金分割的定义是解答此题的关键;14、点C在圆外【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15、8π【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为8π.考点:弧长的计算;正多边形和圆.16、1:1【分析】由题意直接根据相似三角形面积的比等于相似比的平方进行求值即可.【详解】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:1,故答案为:1:1.【点睛】本题考查的是相似三角形的性质,熟练掌握相似三角形面积的比等于相似比的平方是解题的关键.17、3<r≤1或r=.【解析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r=.【点睛】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.18、甲【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.三、解答题(共66分)19、(1)图详见解析,;(2)图详见解析,;(3)图详见解析,【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可;(3)将平移得到,使点的对应点是,点的对应点是,点的对应点是(4,−1),在坐标系中画出,并写出点,的坐标;【详解】解:(1)(2)(3)如图所示:(1)根据图形结合坐标系可得:;(2)根据图形结合坐标系可得:点(3,1);(3)根据图形结合坐标系可得:,;【点睛】本题主要考查了作图-旋转变换,作图-轴对称变换,掌握作图-旋转变换,作图-轴对称变换是解题的关键.20、y=﹣.【分析】根据了反比例函数图象上点的坐标特征得到,解得,则可确定M点的坐标为,然后设反比例函数解析式为,再利用反比例函数图象上点的坐标特征得到.【详解】解:根据题意得,解得,所以点的坐标为,设反比例函数解析式为,则,所以反比例函数解析式为.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.21、1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.考点:解直角三角形的应用22、(1)证明见解析;(2)1.【分析】(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=1,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==1,∴BD=2OD=8,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版医药健康持股合同协议书3篇
- 代卖销售合同范例
- 2024年款台式计算机购买合同2篇
- 2024年智能安防技术服务合同2篇
- 2024年度物流园区共建及运营管理合同3篇
- 粉刷项目合同范例
- 演出合同合同范例
- 2024年度互联网数据中心运维外包劳务合同范本3篇
- app宣传服务合同范例
- 煤矿回填采购合同范例
- 道德与法治中考备考建议课件
- 财产保险退保申请范文推荐6篇
- 食品工程原理课程设计
- YYT 0325-2022 一次性使用无菌导尿管
- 羊膜在眼科临床中应用课件
- (71)第十五章15.2.3整数指数幂1-负整数指数幂-导学案
- 初步设计方案询价表
- 2022年江苏省环保集团有限公司招聘笔试题库及答案解析
- 《汽车焊接技术》试卷期末理论考试含参考答案一套
- FMEA分析经典案例【范本模板】
- 2023-2023年山东省学业水平考试英语试题及答案
评论
0/150
提交评论