版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将抛物线向右平移个单位后,得到的抛物线的解析式是()A. B. C. D.2.若反比例函数的图像经过点,则下列各点在该函数图像上的为()A. B. C. D.3.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A. B. C. D.4.如图,在平面直角坐标系中,四边形为菱形,,,,则对角线交点的坐标为()A. B. C. D.5.如图,是⊙上的点,则图中与相等的角是()A. B. C. D.6.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件 B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件 D.事件①和②都是必然事件7.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=40°,则∠BAD的大小为()A.60º B.30º C.45º D.50º8.如图,是的外接圆,是直径.若,则等于()A. B. C. D.9.把方程x(x+2)=5(x-2)化成一般式,则a、b、c的值分别是()A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,210.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()A.24 B.36 C.40 D.9011.二次函数y=-2(x+1)2+3的图象的顶点坐标是()A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3)12.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,抛物线与轴的正半轴相交于点,其顶点为,将这条抛物线绕点旋转后得到的抛物线与轴的负半轴相交于点,其顶点为,连接,,,,则四边形的面积为__________;14.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是▲.15.经过点(1,﹣4)的反比例函数的解析式是_____.16.如图,在平面直角坐标系中,点A的坐标为,反比例函数的图象经过线段OA的中点B,则k=_____.17.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B=_____°.18.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点为位似中心,将△ABC缩小,使变换得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应点的坐标为____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图像与轴交于点.二次函数的图像经过点,与轴交于点,与一次函数的图像交于另一点.(1)求二次函数的表达式;(2)当时,直接写出的取值范围;(3)平移,使点的对应点落在二次函数第四象限的图像上,点的对应点落在直线上,求此时点的坐标.20.(8分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<700.2870≤x<80160.3280≤x<90100.2090≤x≤10040.08(1)频数分布表中的;(2)将上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有人.21.(8分)如图,点是的内心,的延长线交于点,交的外接圆于点,连接,过点作直线,使;(1)求证:直线是的切线;(2)若,,求.22.(10分)如图,在平面直角坐标系中,双曲线l:y=(x>0)过点A(a,b),B(2,1)(0<a<2);过点A作AC⊥x轴,垂足为C.(1)求l的解析式;(2)当△ABC的面积为2时,求点A的坐标;(3)点P为l上一段曲线AB(包括A,B两点)的动点,直线l1:y=mx+1过点P;在(2)的条件下,若y=mx+1具有y随x增大而增大的特点,请直接写出m的取值范围.(不必说明理由)23.(10分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.(1)求点D的坐标:(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.24.(10分)某图书馆2014年年底有图书20万册,预计2016年年底图书增加到28.8万册.(1)求该图书馆这两年图书册数的年平均增长率;(2)如果该图书馆2017年仍保持相同的年平均增长率,请你预测2017年年底图书馆有图书多少万册?25.(12分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?26.甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有两个偶数的概率是多少?(2)取出的3个小球上全是奇数的概率是多少?
参考答案一、选择题(每题4分,共48分)1、B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向右平移3个单位长度得点(0,3),然后根据顶点式写出平移后的抛物线解析式.【详解】解:将抛物线向右平移个单位后,得到的抛物线的解析式.故选:B【点睛】本题考查的是抛物线的平移.抛物线的平移可根据平移规律来写,也可以移动顶点坐标,根据平移后的顶点坐标代入顶点式,即可求解.2、C【分析】将点代入求出反比例函数的解析式,再对各项进行判断即可.【详解】将点代入得解得∴只有点在该函数图象上故答案为:C.【点睛】本题考查了反比例函数的问题,掌握反比例函数的性质以及应用是解题的关键.3、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.4、D【分析】过点作轴于点,由直角三角形的性质求出长和长即可.【详解】解:过点作轴于点,∵四边形为菱形,,∴,OB⊥AC,,∵,∴,∴,∴,,∴,∴.故选D.【点睛】本题考查了菱形的性质、勾股定理及含30°直角三角形的性质,正确作出辅助线是解题的关键.5、D【分析】直接利用圆周角定理进行判断.【详解】解:∵与都是所对的圆周角,∴.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、D【分析】把∠DAB归到三角形中,所以连结BD,利用同弧所对的圆周角相等,求出∠A的度数,AB为直径,由直径所对圆周角为直角,可知∠DAB与∠B互余即可.【详解】连结BD,∵同弧所对的圆周角相等,∴∠B=∠C=40º,∵AB为直径,∴∠ADB=90º,∴∠DAB+∠B=90º,∴∠DAB=90º-40º=50º.故选择:D.【点睛】本题考查圆周角问题,关键利用同弧所对圆周角转化为三角形的内角,掌握直径所对圆周角为直角,会利用余角定义求角.8、C【解析】根据同弧所对的圆周角等于圆心角的一半可得:∠A=
∠BOC=40°.【详解】∵∠BOC=80°,
∴∠A=∠BOC=40°.
故选C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【分析】方程整理为一般形式,找出常数项即可.【详解】方程整理得:x2−3x+10=0,则a=1,b=−3,c=10.故答案选A.【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的每种形式.10、D【分析】设袋中有黑球x个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x个,由题意得:=0.6,解得:x=90,经检验,x=90是分式方程的解,则布袋中黑球的个数可能有90个.故选D.【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.11、B【解析】分析:据二次函数的顶点式,可直接得出其顶点坐标;解:∵二次函数的解析式为:y=-(x-1)2+3,∴其图象的顶点坐标是:(1,3);故选A.12、A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A.考点:抛物线的平移规律.二、填空题(每题4分,共24分)13、32【分析】利用抛物线的解析式算出M的坐标和A的坐标,根据对称算出B和N的坐标,再利用两个三角形的面积公式计算和即可.【详解】∵,∴M(2,-4),令,解得x1=0,x2=4,∴A(0,4),∵B,N分别关于原点O的对称点是A,M,∴B(-4,-0),N(-2,4),∴AB=8,∴四边形AMBN的面积为:2S△ABM=,故答案为:32.【点睛】本题考查二次函数的性质,关键在于利用对称性得出坐标点.14、-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.15、﹣【分析】直接利用反比例函数的性质得出解析式.【详解】∵反比例函数经过点(1,﹣4),∴xy=﹣4,∴反比例函数的解析式是:y=﹣.故答案为:y=﹣.【点睛】本题考查的是反比例函数的性质,是近几年中考的热点问题,要熟练掌握.16、-2【解析】由A,B是OA的中点,点B的坐标,把B的坐标代入关系式可求k的值.【详解】∵A(-4,2),O(0,0),B是OA的中点,∴点B(-2,1),代入得:∴故答案为:-2【点睛】本题考查反比例函数图象上点的坐标特征及线段中点坐标公式;根据中点坐标公式求出点B坐标,代入求k的值是本题的基本方法.17、35°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,根据三角形内角与外角的关系可得∠B的大小.【详解】∵同弧所对的圆周角相等求得∠D=∠A=42°,且∠APD=77°是三角形PBD外角,∴∠B=∠APD−∠D=35°,故答案为:35°.【点睛】此题考查圆周角定理及其推论,解题关键明确三角形内角与外角的关系.18、(1,)或(-1,-)【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.本题中k=1或−1.【详解】解:∵两个图形的位似比是1:(−)或1:,AC的中点是(4,3),∴对应点是(1,)或(−1,−).【点睛】本题主要考查位似变换中对应点的坐标的变化规律.三、解答题(共78分)19、(1);(2)或;(3).【分析】(1)先求出A,B的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C点坐标,再根据平移的性质得到,设点,则,把D点代入二次函数即可求解.【详解】解:(1)令,得,∴.把代入,解得.把,代入,得,∴,∴二次函数的表达式为.(2)由图像可知,当时,或.(3)令,则,∴.∵平移,∴,∴.设点,则,∴,∴,(舍去).∴.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.20、(1)14;(2)补图见解析;(3)1.【解析】(1)根据第1组频数及其频率求得总人数,总人数乘以第2组频率可得a的值;(2)把上面的频数分布直方图补充完整;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.【详解】(1)∵被调查的总人数为6÷0.12=50人,∴a=50×0.28=14,故答案为:14;(2)补全频数分布直方图如下:(3)估计该校进入决赛的学生大约有1000×0.08=1人,故答案为:1.【点睛】此题考查了用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.21、(1)证明见解析;(2).【分析】(1)首先根据三角形内心的性质得出,然后利用等弧对等角进行等量转换,得出,最后利用垂径定理即可得证;(2)利用相似三角形的判定以及性质即可得解.【详解】(1)证明:如图所示,连接,∵点是的内心,∴,∴,∴,又∵,,∴,∴,∴,又∵为半径,∴直线是的切线;(2)∵,∴,又∵(公共角),∴,∴,即,∵,∴∴∴.【点睛】此题主要考查圆的切线的证明以及相似三角形的判定与性质,熟练掌握,即可解题.22、(1);(2);(1)0<m≤1【分析】(1)将B(2,1)代入求出k即可;(2)根据A(a,b)在反比例函数图象上,得到,根据三角形的面积列方程即可得到结论;(1)把(,1)代入y=mx+1得,m=1,再根据一次函数的性质即可得到结论.【详解】解:(1)将B(2,1)代入得:k=2,∴反比例函数l的解析式为;(2)∵A(a,b)在反比例函数的图象上,∴,即,∵S△ABC==2,即=2,解得:b=1,∴点A的坐标为;(1)∵直线l1:y=mx+1过点P,点P为l上一段曲线AB(包括A,B两点)的动点,∴当点P与A重合时,把(,1)代入y=mx+1得,m=1,∵y=mx+1具有y随x增大而增大的特点,∴m>0,∴m的取值范围为:0<m≤1.【点睛】本题考查了反比例函数与几何综合,待定系数法求函数的解析式,三角形的面积计算,一次函数的性质,熟练掌握数形结合思想的应用是解题的关键.23、(1)(4,3);(2)y=x+x;(3)【分析】(1)根据矩形的性质可知点D的纵坐标为3,代入直线解析式即可求出点D的横坐标,从而可确定点D的坐标;(2)直接将点A、D的坐标代入抛物线解析式即可;(3)当P为抛物线顶点时,△POA面积最大,将抛物线解析式化为顶点式,求出点P的坐标,再计算面积即可.【详解】解:(1)设D的横坐标为x,则根据题意有3=x,则x=4∴D点坐标为(4,3)(2)将A(6,0),D(4,3)代入y=ax+bx中,得解得:∴此抛物线的表达式为:y=x+x;(3)由于△POA底边为OA=6,∴当P为抛物线顶点时,△POA面积最大∴∴∴的最大值为【点睛】本题是一道二次函数与矩形相结合的题目,熟练掌握二次函数的性质和轴对称的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.24、(1)20%(2)34.56【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书20(1+x)2万册,即可列方程求解;(2)利用求得的百分率,进一步求得2017年年底图书馆存图书数量即可.试题解析:(1)设年
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省吕梁市2023-2024学年高二下学期5月质量检测试题英语
- 非平衡态热力学
- 2024年贵阳驾驶员客运从业资格证考试题
- 2024年司机雇佣劳务合同范本
- 2024年甘肃考客运资格证模拟考试题
- 2024年拉萨客运驾驶员从业资格证继续培训教育
- 2024年阜新小型客运从业资格证理论考题
- 2024年新疆客运员考试考什么内容的题好
- 2024年贵阳客运驾驶从业资格证模拟考试答案下载
- 2024年巴彦淖尔小型客运从业资格证理论考题
- 大数据治理工作方案
- 【全面做好调研巡视问题整改工作表态发言】 巡视整改表态发言
- 腺病毒感染诊疗指南
- 机电安装施工实测实量质量控制重点及监理措施
- 高校科技成果转化问题与对策建议
- 医院院务公开考核表
- 空冷技术知识
- 检测项目及技术要求
- 集体所有制企业章程(完整版)
- 分频器的简易计算与制作
- 3%23连铸方坯生产中节距履带钢工艺研究
评论
0/150
提交评论