2022年福建省厦门市思明区厦门第一中学数学九年级第一学期期末学业水平测试试题含解析_第1页
2022年福建省厦门市思明区厦门第一中学数学九年级第一学期期末学业水平测试试题含解析_第2页
2022年福建省厦门市思明区厦门第一中学数学九年级第一学期期末学业水平测试试题含解析_第3页
2022年福建省厦门市思明区厦门第一中学数学九年级第一学期期末学业水平测试试题含解析_第4页
2022年福建省厦门市思明区厦门第一中学数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,中,,则的值为()A. B. C. D.2.如图,,,EF与AC交于点G,则是相似三角形共有()A.3对 B.5对 C.6对 D.8对3.已知二次函数y=ax2+bx+c的x、y的部分对应值如表:则该函数的对称轴为()A.y轴 B.直线x= C.直线x=1 D.直线x=4.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A. B.C. D.5.如图,以点O为位似中心,把△ABC放大为原来的2倍,得到△A´B´C´,以下说法错误的是()A. B.△ABC∽△A´B´C´C.∥A´B´ D.点,点,点三点共线6.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度忽略不计),若桌面的面积是1.2m²,则地面上的阴影面积是()A.0.9m² B.1.8m² C.2.7m² D.3.6m²7.如图,在中,,,,以边的中点为圆心作半圆,使与半圆相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是()A.8 B.9 C.10 D.128.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为A. B.5 C.4 D.39.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.12.如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,点,分别落在点,处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,依次进行下去,……,若点,,则点B2016的坐标为______.13.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧的长为cm.14.如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,则弧DF的长为_________.15.如图,直线轴于点,且与反比例函数()及()的图象分别交于、两点,连接、,已知的面积为4,则________.16.如图,在正方形ABCD中,AB=4,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为_________17.已知圆锥的底面半径为2cm,侧面积为10πcm2,则该圆锥的母线长为_____cm.18.二次函数的图象与y轴的交点坐标是________.三、解答题(共66分)19.(10分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.20.(6分)如图,在宽为40m,长为64m的矩形地面上,修筑三条同样宽的道路,每条道路均与矩形地面的一条边平行,余下的部分作为耕地,要使得耕地的面积为2418m2,则道路的宽应为多少?21.(6分)如图,矩形中,,,点是边上一定点,且.(1)当时,上存在点,使与相似,求的长度.(2)对于每一个确定的的值上存在几个点使得与相似?22.(8分)已知二次函数y=a−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),23.(8分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡米,坡度为;将斜坡的高度降低米后,斜坡改造为斜坡,其坡度为.求斜坡的长.(结果保留根号)24.(8分)用配方法解方程:x2﹣8x+1=025.(10分)在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),点B(﹣1,﹣3),点C(﹣1,﹣1).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1,并写出A1点的坐标:;(3)以O为位似中心,在第一象限内把△ABC扩大到原来的两倍,得到△A2B2C2,并写出A2点的坐标:.26.(10分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求的值.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据相似三角形的判定和性质,即可得到答案.【详解】解:∵,∴∽,∴;故选:D.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.2、C【分析】根据相似三角形的判定即可判断.【详解】图中三角形有:,,,,∵,∴共有6个组合分别为:∴,,,,,故选C.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.3、B【分析】根据表格中的数据可以写出该函数的对称轴,本题得以解决.【详解】解:由表格可得,该函数的对称轴是:直线x=,故选:B.【点睛】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.4、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=.故选B.【点睛】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.5、A【分析】直接利用位似图形的性质进而分别分析得出答案.【详解】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,

∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,OB´:BO=2:1,故选项A错误,符合题意.

故选:A.【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6、C【分析】根据桌面与地面阴影是相似图形,再根据相似图形的性质即可得到结论.【详解】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴∴而OD=2.4,CD=0.8,∴OC=OD-CD=1.6,∴这样地面上阴影部分的面积为故选C.【点睛】本题考查了相似三角形的应用,根据相似图形的面积比等于相似比的平方,同时考查相似图形的对应高之比等于相似比,掌握以上知识是解题的关键.7、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,

此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,

∵AB=20,AC=8,BC=6,

∴AB2=AC2+BC2,∴∠C=90°,

∵∠OP2A=90°,∴OP2∥BC.

∵O为AB的中点,∴P2C=P2A,OP2=BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=AC=4=OQ2.

∴P2Q2最小值为OQ2-OP2=4-2=2,

如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,

P2Q2最大值=AO+OQ2=5+4=9,

∴PQ长的最大值与最小值的和是20.

故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.8、B【解析】试题分析:∵∠BAC=∠BOD,∴.∴AB⊥CD.∵AE=CD=8,∴DE=CD=1.设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=1,OE=8﹣r,∴OD2=DE2+OE2,即r2=12+(8﹣r)2,解得r=2.故选B.9、D【分析】根据轴对称图形、中心对称图形的定义即可判断.【详解】A、是轴对称图形,不符合题意;B、是中心对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,故符合题意.故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.10、B【解析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、(2,10)或(﹣2,0)【解析】∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).12、(6048,2)【分析】由题意可得,在直角三角形中,,,根据勾股定理可得,即可求得的周长为10,由此可得的横坐标为10,的横坐标为20,···由此即可求得点的坐标.【详解】在直角三角形中,,,由勾股定理可得:,的周长为:,∴的横坐标为:OA+AB1+B1C1=10,的横坐标为20,···∴.故答案为.【点睛】本题考查了点的坐标的变化规律,根据题意正确得出点的变化规律是解决问题的关键.13、.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出答案:∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧的长=(cm).14、【解析】分析:连接AE,根据圆的切线的性质可得AD⊥BC,解Rt△ABE可求出∠ABE,进而得到∠DAB,然后运用弧长的计算公式即可得出答案.详解:连接AE,∵BC为圆A的切线,∴AE⊥BC,∴△ABE为直角三角形,∵AD=2,AB=2,∴AE=2,∴△ABE为等腰直角三角形,∴∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB=90°,∴∠BAD=45°+90°=135°,∴弧FED的长=π.点睛:本题主要考查的是圆的切线的性质以及弧长的计算公式,属于中等难度题型.得出∠BAD的度数是解题的关键.15、1.【分析】根据反比例函数的几何意义可知:的面积为,的面积为,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数的几何意义可知:的面积为,的面积为,∴的面积为,∴,∴.故答案为1.【点睛】本题考查反比例函数的几何意义,解题的关键是正确理解的几何意义,本题属于基础题型.16、2【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【详解】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE,∴∠FAB+∠BAE=∠BAE+∠MAE,∴∠FAE=∠MAB,∴△FAE≌△MAB(SAS),∴EF=BM.因为正方形ABCD的边长为1,则MC=1-1=3,BC=1.在Rt△BCM中,∵BC2+MC2=BM2,∴12+32=BM2,解得:BM=2,∴EF=BM=2.故答案为:2.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17、5【解析】根据圆的周长公式求出圆锥的底面周长,根据圆锥的侧面积的计算公式计算即可.【详解】设圆锥的母线长为Rcm,圆锥的底面周长=2π×2=4π,则×4π×R=10π,解得,R=5(cm)故答案为5【点睛】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18、【分析】求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标.【详解】把代入得:,∴该二次函数的图象与y轴的交点坐标为,故答案为.【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.三、解答题(共66分)19、(1)a=4,k=8;(2)①E(5,);②满足条件的m的值为4或5或2.【分析】(1)把点A坐标代入直线AB的解析式中,求出a,求出点B坐标,再将点B坐标代入反比例函数解析式中求出k;(2)①确定出点D(5,4),得到求出点E坐标;②先表示出点C,D坐标,再分三种情况:当BC=CD时,判断出点B在AC的垂直平分线上,即可得出结论,当BC=BD时,表示出BC,用BC=BD建立方程求解即可得出结论,当BD=AB时,m=AB,根据勾股定理计算即可.【详解】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),△BCD是等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,当BC=BD时,B(2,4),C(m,8),∴,∴,∴m=5,当BD=AB时,,综上所述,△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5或2.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平移的性质,等腰三角形的性质,线段的垂直平分线的性质,用方程的思想解决问题是解本题的关键.20、道路的宽应为1m.【解析】分析:根据题意,设道路的宽为xm,根据矩形的面积找到等量关系,列方程求解即可.详解:解:设道路的宽应为xm,则(64-2x)(40-x)=2418,整理,得x2-72x+71=0,解得x1=1,x2=71(不合题意,舍去).答:道路的宽应为1m.点睛:此题主要考查了一元二次方程几何问题中的应用,分清矩形的特点,确定矩形的面积是解题关键,注意解出来的结果要符合实际情况.21、(1)或1;(2)当且时,有1个;当时,有2个;当时,有2个;当时,有1个.【分析】(1)分△AEF∽△BFC和△AEF∽△BCF两种情形,分别构建方程即可解决问题;(2)根据题意画出图形,交点个数分类讨论即可解决问题;【详解】解:(1)当∠AEF=∠BFC时,

要使△AEF∽△BFC,需,即,解得AF=1或1;

当∠AEF=∠BCF时,

要使△AEF∽△BCF,需,即,解得AF=1;

综上所述AF=1或1.(2)如图,延长DA,作点E关于AB的对称点E′,连结CE′,交AB于点F1;

连结CE,以CE为直径作圆交AB于点F2、F1.当m=4时,由已知条件可得DE=1,则CE=5,即图中圆的直径为5,可得此时图中所作圆的圆心到AB的距离为2.5,等于所作圆的半径,F2和F1重合,即当m=4时,符合条件的F有2个,当m>4时,图中所作圆和AB相离,此时F2和F1不存在,即此时符合条件的F只有1个,当1<m<4且m≠1时,由所作图形可知,符合条件的F有1个,综上所述:当1<m<4且m≠1时,有1个;

当m=1时,有2个;

当m=4时,有2个;

当m>4时,有1个.【点睛】本题考查作图-相似变换,矩形的性质,圆的有关知识等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(1),;(2)当x<或x>5时,函数值大于1.【分析】(1)把(-1,1)和点(2,-9)代入y=ax2-4x+c,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数的图象过点(−1,1)和点(2,−9),∴,解得:,∴;∴对称轴为:;(2)令,解得:,,如图:∴点A的坐标为(,1),点B的坐标为(5,1);∴结合图象得到,当x<或x>5时,函数值大于1.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.23、斜坡的长是米

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论