




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数的图象与性质
一、知识网络
三角函数的图冢和性质
三角函数的性质三角函数的图象
基
定
正
本
义
奇单周弦
三
域
型
角
、
基本变换函
函
值偶调期
数
数
域
图
图
性性性冢
冢
五
引申:y=_/(皈+协型函数由
点
图
法
奇偶性_________________冢
作
单调性_________________写
图
解
周期性_________________析
式
二、高考考点
(-)三角函数的性质
1、三角函数的定义域,值域或最值问题;
2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇函数(或偶函数)的
充要条件的应用;寻求三角函数的单调区间;比较大小的判断等.
3、三角函数的周期性;寻求/(皈+。)型三角函数的周期以及难度较高的含有绝
对值的三角函数的周期.
(-)三角函数的图象
1、基本三角函数图象的变换;
2、y='sin(阪+0)型三角函数的图象问题;重点是“五点法”作草图的逆用:由给出
的一段函数图象求函数解析式;
3、三角函数图象的对称轴或对称中心:寻求或应用;4、利用函数图象解决应用问
题.
(三)化归能力以及关于三角函数的认知变换水平.
三、知识要点
(-)三角函数的性质
1、定义域与值域
2、奇偶性
(1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx.
(2)/(皈+。)型三角函数的奇偶性
(i)g(x)='sm(勿+⑵(X£R)
g(x)为偶函数Og(-x)=g(')(xeR)
=4sin(而+妙=/sin(一皈+妙(xw&=sin飘cos伊=Q(xeR)
7F,
coscp=OQ<P=ATT+—(凡eZ)
由此得2;
同理,g(x)=4in(<3x+8)(xeR)为奇函数=sin。=0=。=而(林Z)
(ii)双力=<cos(而+②(xwR)
双力=Rcos(皈+。)为偶函数=。=面(尢cZ);飘x)=Hcos(皈+同为奇函数
7F
=(p-k7T-^—(keZ)
3、周期性
(1)基本公式
(i)基本三角函数的周期y=sinx,y=cosx的周期为2k;y=tanx,y=
cotx的周期为汗.
(ii)/(皈+0)+归型三角函数的周期
竺
_y=Hsin(0x+8)+%y=jcos(0x+@+k的周期为例;
7T
y=<tan(皈+◎+k,y=Acot(皈+同+上的周期为一
(2)认知
(i)>=>(皈+划型函数的周期
7T
了=|小山(而+现了=,cos(皈+砌的周期为同;
7F
y=Mtan(砂r+砌j=Mcot(<z)x+砌的周期为阿
(ii)y=火皈+。)+楸W0)的周期
y=Msin(0x+©+M,y=Wcos(0x+@)+N的周期为何.
7T
产Mtan(0x+0+N,j=p4cot®x+@+对
均同它们不加绝对值时的周期相同,即对y=/(皈+蚣+上的解析式施加绝对值后,
该函数的周期不变.注意这一点与(i)的区别.
(ii)若函数为了(皈+同型两位函数之和,则探求周期适于“最小公倍数法”.
(iii)探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明.
(3)特殊情形研究
(i)y=tanx—cotx的最小正周期为2;
7T
5)尸恤外门时的最小正周期为5;
穴
(iii)y=sin'x+cos'x的最小正周期为2.
由此领悟“最小公倍数法”的适用类型,以防施错对象.
4、单调性
(1)基本三角函数的单调区间(族)
依从三角函数图象识证“三部曲”:
①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称
的一个周期;
②写特解:在所选周期内写出函数的增区间(或减区间);
③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这•函
数的增区间族(或减区间族)
循着上述三部曲,便可得出课本中规范的三角函数的单调区间族.
揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域.
(2)y=」(皈+。)型三角函数的单调区间
此类三角函数单调区间的寻求“三部曲”为
①换元、分解:令11=的+°,将所给函数分解为内、外两层:y=f(u),u=°x+°;
②套用公式:根据对复合函数单调性的认知,确定出f(u)的单调性,而后利用(1)
中公式写出关于u的不等式;
③还原、结论:将口=的+°代入②中u的不等式,解出x的取值范围,并用集合或
区间形成结论.
(-)三角函数的图象
1、对称轴与对称中心
(1)基本三角函数图象的对称性
X=ATT+—(上eZ)
(i)正弦曲线y=sinx的对称轴为2;正弦曲线y=sinx的
对称中心为3k,0)伉eZ).
(ii)余弦曲线y=cosx的对称轴为:余弦曲线y=cosx的对称
(加+三,0)(化eZ)
中心2
件,0)叱eZ)、
(iii)正切曲线y=tanx的对称中心为2;正切曲线y=tanx无对称
轴.
认知:
①两弦函数的共性:
x=4为两弦函数f(x)对称轴Q/(为为最大值或最小值;(2,0)为两弦函数f(X)
对称中心Q/(㈤=o.
②正切函数的个性:
,0)为正切函数f(x)的对称中心Q/(4)=0或/(㈤不存在.
(2),(加+同型三角函数的对称性(服从上述认知)
(i)对于g(x)=本也(皈+。)或g(X)=念。$(皈+回的图象
x=4为g(x)对称轴Qg(4)为最值(最大值或最小值);(4,0)为两弦函数g(x)
对称中心Qg(')=0.
(日)对于86)=出领(皈+9)的图象(兄,0)为两弦函数g(x)的对称中心=g(㈤
=0或式')不存在.
2、基本变换
(1)对称变换(2)振幅变换(纵向伸缩)(3)周期变换(横向伸缩)(4)相位变换
(左右平移)(5)上、下平移
3、丫=松也(皈+。)的图象
(1)五点作图法
(2)对于A,T,0,中的认知与寻求:①A:图像上最高点(或最低点)到平衡
位置的距离;
2A:图像上最高点与最低点在y轴上投
影间的距离.
T
T—
②与:图象的相邻对称轴(或对称中心)间的距离;4:图象的对称轴与相邻对称中
心间的距离.
27r
。:由丁=同得出.③。:
解法一:运用“代点法”求解,以图象的最高点(或最低点)坐标代入为上策,若以图
象与x轴交点坐标代入函数式求中,则须注意检验,以防所得中值为增根;
解法二:逆用“五点作图法”的过程(参见经典例题).
四、经典例题
例1、求下列函数的值域:
_2sinxcos2x_出cosx
⑴'1+sinx(2)2+sinx(3)y=(4-3sinx)(4-3cosx)
(4)V=卜山司+lcosx\(5)y=卜山H+sin(6)y=附H+|cosx|+sin42x
分析:对于形如(1)(2)(3)的函数求值域,基本策略是(i)化归为“sm(皈+同
的值域:(ii)转化为sinx(或cosx)的二次函数;对于(4)(5)(6)之类含有绝对值
的函数求值域,基本策略则是(i)在适当的条件下考察y2;(ii)转化为分段函数来处理;
(iii)运用其周期性、奇偶性或函数图象对称性转化.
解:
2sinxcos2x2sinx(l-sin2x)
y=------:-----=y=...........-----------
⑴14-sinx1+sinx
=2sinx(l-sinx)(sinx*-1)
=y=-2(sinx--^)2+g(sinx*-1)-1<sin0<(sin
-4<y<-y€(-4,-]
・・・2,即所求函数的值域为2.
y=geosX第s1n=
(2)由2+sinx
...抄+3sin(x+同=-2y(其中伊为辅助角)
sin(x+@=—==
W+3注意到这里xGR」sin(x+®!<1;
I~T^=I=1Q卜2_y|WJ_/+3
.Jy+3=4y<y2+3<=>j?<1=-1工yMl
,所求函数的值域为[-L1].
(3)这里丁=16—12(sinx+cosx)+9smxcosx令sinx+cosx=t则有
sinxcosx=-1)
t=sin(x+—)得16[—5/2,5^]
且由4
^=16-12Z+-(/2-1)(-^<Z<72)
于是有2
y=—(t——+—(—V2《£VV2)
-5/2<t<V2,:.0<|(t-^)2<17+125/2应
[Zll+1272]
因此,所求函数的值域为22
(4)注意到这里y>0,且丁=1+巾"I...|sin2x|Vl,:.1少=2泛即所求
函数的值域为[L0].
(5)注意到所给函数为偶函数,又当x"时,¥=kmH+sinx...此时°工”2
同理,当KO时,亦有°&”2.所求函数的值域为[°,2].
冗
(6)令/(工)=卜①x|+|cosx|+sin2xy(yX)
则易见f(X)为偶函数,且2
7T
,2是f(x)的一个正周期.①只需求出f(x)在一个周期上的取值范围.
7T
4
当x£[0,2]时,/W=smx+coSx+Sin2x又注意到“5
7V
.•.x=4为f(x)图象的一条对称轴②
7T
.•.只需求出f(X)在[0,4]上的最大值.
7Tsinx+cosx=V2sin(x4--)4c/.c、4
而在[0,4]上,4递增.③sm2x=(sin2%)亦
递增④
7T
,由③④得f(x)在[0,4]上单调递增.
即14/(力,1+应⑤
于是由①、②、⑤得所求函数的值域为[11+痣].
点评:解(1)(2)运用的是基本化归方法;解(3)运用的是求解关于sinx+cosx
与sinxcosx的函数值域的特定方法;解(4)借助平方转化;解(5)(6)则是利用函数性
质化繁为简,化暗为明.这一点在解(6)时表现得淋漓尽致.
例2、求下列函数的周期:
(I)y=Zsin2x+4sinxcosx+3cos,x.闻)y=sin4x+cos2x.
开
y=sin(--2x)+sin2x,々.।
⑶6;(4/=sinx+2向九⑸
分析:与求值域的情形相似,求三角函数的周期,首选是将所给函数化为“sm(皈+。)
+k的形式,而后运用已知公式.对于含有绝对值的三角函数,在不能利用已有认知的情况
下,设法转化为分段函数来处理.
y=(1-cos2x)+2sin2x+3(^+COj(2sin2x+;cos2x)+g
解:(1)2
理•sin(2x+◎+其中辅助角q)=arctanl)
=NZ4
T=—=7F
.♦•所求最小正周期2
3
.1-COS2X.14-cos2x1*l/+
y=(------->3+---------4-x4一
22=4_
-cos4x+—
88
T=-
,所求周期2.
y=sin2x-sin(2x--)sin2x-(sin2xcos^--cos2xsin-)
(3)6
(l-y)sin2x+|cos2x
因早生sin(2x+<p).其中e为辅助角、E④sin(2x+0)
2.注意到2的最小正周期为不,故
开
所求函数的周期为5.
3sinx,sinx>0;
y=s.
(4)〔一sinx,sinx<0.注意到3sinx及-sinx的周期为2k,又sinx'O
(或sinx〈O)的解区间重复出现的最小正周期为2k.•••所求函数的周期为2汗.
—sin2x,sinx>0;
2
=y=<
sinxcosx,sinx>0;
y=<--sin2x,sinx<0.
-sinxcosx,sinx<0.I2
(5)
注意到sin2x的最小正周期方=",又sinx20(或sinx<0)的解区间重复出现的最
小正周期心=2不,这里看,四的最小公倍数为2k..•.所求函数的周期丁=2k.
点评:对于⑸,令f(x)=Wnx|cosx,贝岫,(x+2m=/(x)知,2"是f(x)
的一个正周期.①
f(x+7i)=|sin(x4-7T)|cos(x+7l)=-|sinx|cosx(x)
v不是f(x)的最小
正周期.②
于是由①②知,f(X)的最小正周期为2开.
在一般情况下,探求上述一类分段函数的周期,仅考虑各段函数
的最小正周期的最小公倍数是不够的,还要考虑各分支中的条件区间
重复出现的最小正周期.双方结合,方可能获得正确结果.
//、I.Ifsinx,sinx>0;
请大家研究Isinx,sin”<U的最小正
周期,并总结自己的有关感悟与经验.
例3、已知函数的部分图象,
(1)求°,*的值;(2)求函数图象的对称轴方程和对称中心坐标.
解:
令丁=2sin(皈+同,则由题意得f(0)=iQ2sin*=l
(1)
7T7F/(x)=2sin(皈+匹)
<5-\
6
7T
/(x)=2sin(2xd—)2x4--=k7r+—(keZ)
(2)由(1)得6令62,解得
k?r7T_
x=—+—(keZ)s
2o
x=—+—(A:eZ)2x+—=k7r(keZ)
・•・函数f(x)图象的对称轴方程为26;令6解
k穴/r
x=---(keZ)
得212
...函数f⑴图象的对称中心坐标为停啜°距2)
点评:前事不忘,后事之师.回顾运用''五点作图法”作出所给三角函数在一个周期内
图象的列表、描点过程,便可从中悟出所给函数图象上的五个关键点横坐标满足的等式:
.7T3开
皈l+*=0;WX2+8=5;皈3+@=江,纣々+0=万;®Xj+(p=27E
7=loglcos(^-2x)
2
例4、(1)函数2的单调递增区间为
f(x)=2sin(x+二)在区间[2,a]
(2)若函数102上为单调函数,则a的最大值
为o
y=5sin(3x-—)
(3)函数4的图象的对称中心是。
2x.2x刀\
y=sin—+cos(—+—)
函数336的图象中相邻两条对称轴的距离为。
(4)把函数V=#cosx-sinx的图象向左平移m(m>0)个单位,所得的图象关于y轴
对称,则m的最小正值为。
/(x)=sin(的+效(g>Odd<—)
(5)对于函数2,给出四个论断:
7T7T
①它的图象关于直线X=12对称;②它的图象关于点(5,0)对称;
7T
③它的周期为不;④它在区间[一不,0)上单调递增.
以其中的两个论断作为条件,余下的两个论断作为结论,写出你认为正确的命题,它
是。
分析:
=log1sin(-2x)
(1)这里2的递增区间=sm(一2乃的正号递减区间=u=sin2x
递增且sin2x<0
冗7T
=2k7U--<x<2k?T(keZ)^=>k7V-—<x<k?r(keZ)
,应填4代CN)
7T7T光
2kn--<x+—<2kn+-(keZ}
(2)由f(X)递增得2102
=2k7T-y<X<2上开+]■(左6Z)
re_,3zr_,2九\八_
一任r[2小刀"-,2上7F+--](jt€Z)s
易见,255
7F7T34
2k?r+-<x+—<2k7T+—(k&Z)
由f(x)递减得2102
=2k7r+2^7-r<x<2k7V+-7^7-r(keZ)
2开」,7开JT「2开7a,
—<x<——e[—>—]
当k=0时,55注意到255而不会属于其它减区间,故知
7TF
这里a的最大值为5
3x--==—+—(>teZ)
⑶(i)令4312
k穴__+7_T_
...所给函数图象的对称中心为(312,o)3eZ).
.2xz2x队12x^32x.z2x鼻
y=sin---Fcos(---F—)=y=—sin——十——cos——=y=sin(—十一)
(n)336232333
①
2x7T.7T,,_、
———=kjr+—(左eZ)
解法一(直接寻求)在①中令332则有
3,57r..日、
x=——1(keZ)
24②
5TTUTTUTT
X=---X=--------
又在②中令k=0得4,令k=l得4所求距离为4-
57r3开
=
4---2
解法二(借助转化):注意到所求距离等于函数的最小周期的一半,又由①得这一函数
的最小正周期为
3TT
T=3",故所求距离为2.
y=2cos(x+-).
(4)这里6将这一函数图象向左平移m(m〉0)个单位,所得图象的
兀
y=2cos(工+―+冽).f(x)=2cos(x+—+m)
函数解析式为6令6
/开、/汽1、
。cos(xd---FM)=cos(-xH—+阳
则由题设知f(x)为偶函数=f(-x)=f(x)66
=(x+-4-w)±(-x+-4-w)=2k林kwZ)=x==k7T-^(keZ)
666・・・所求m
5n
的最小值为6.
(5)为使解题的眉目清晰,首先需要认定哪个论断必须作为条件,哪个论断只能作为
结论,哪个论断既可作为条件,又可作为结论;一般地,独臼决定图象形状的论断必须作为
条件,既不能决定形状,也不能确定位置的论断只能作为结论.在这里,③必须作为条件,
而④只能作为结论.于是这里只需考察
①、③=②、④与②、③=>①、④这两种情形.
(i)考察①、③=②、④是否成立.
由③得0=2,故/(x)=sm(2x+⑵.又由①得
/(^-)=±1Q:+w==
yr,jr
|d<-,:,k=O,(p=-/(x)=sin(2x+-)
注意到23.在①、③之下,3,易知此时
②、④成立.
(ii)考察②、③=①、④是否成立.由③得。=2,故1/(x)=sin(2x+@).
7T27r27r
/(二)=O=sin(丝+河=0=9=江一丝OteZ)
又由②得333注意到
/(x)=sin(2x4—)
在②、③之下,3,易知此时①、④成立.
于是综合(i)(ii)得正确的命题为①、③=②、④与②、③=①、④.
点评:对于(4)利用了如下认知:sinof=sin#=P=^r+(-l)Ea(keZ);
cosa=cos§06=2k7r+a^=>a+=2k7T(keZ)
对于(5),认定哪个论断必须作为条件,哪个论断必须作为结论是认知问题和简化解
题过程的关键,请大家注意领悟和把握这一环节.
例5、已知/(x)=/sm皈+3cos勿(G>0)的最小正周期为2,当'=5时,f(x)
取得最大值2.
(1)求f(x)的表达式;
(2)在闭区间4'4上是否存在f(x)图象的对称轴?如果存在,求出其方程;
如果不存在,说明理由.
分析:出于利用已知条件以及便于考察f(X)的图象的对称轴这两方面的考虑,先将f
(x)化为“sml皈+S)+k的形式,这是此类问题的解题的基础.
f(x)=JA2+B2(J:,=sin①x+/cos①x)
解:⑴去vA2+B2VA"+B2
AB
,-=cos(p>=sin
令J/+炉,JH+炉
则有
f(x)=JA?+B「sin(COX+@
Y-[A=y/3
+B?=20(0=开
,0n0c§=]
力sin—l-Dcos—=2tan夕=——
33
由题意得〔②又由①知3,注意到这里A>0且B>0,
7T
0=~7
取辅助角6
JT
f(x)=2sin(7ix+-)
则由②得6③
1
7R+—=
ATF+—(keZ)解得x=k+5(无eZ)
(2)在③中令62
’1-23但595A八
—&kd—&—,仔—Vk.K—(keZ)(,
解不等式4341212④注意到,故由④得
k=5.
212316
[r—,—Jnx=—
于是可知,在闭区间44上有且仅有一条对称轴,这一对称轴的方程为3
点评:对于最值,对称轴和对称中心等问题,f(x)一经化为“sin(皈+©)+k的形
式,解题便胜券在握.
金(2兀1),8(——,1)都在函数/'(x)=asinx+2>cosx+c(a,b,ceR)
例6、已知点2的图象上.
若定义在非零实数集上的奇函数g(x)在(0,+8)上是增函数,且g(2)=0.求当g[f
7T
(X)"0且x£[o,2]时,实数a的取值范围.
卜+c=1
分析:由点A、B都在函数,(乃=混1nx+Bcosx+c的图象上得:2+‘=1,
.\b=a,c=1—a.
./(%)=asinx+acosx+(l-a).」")一Visin(无+1)+(l-以)
此时,由g[f(x)]〈0且xd[O,]解出a的范围,一方面需要利用g(x)的单调性
脱去“f”,另一方面又要注意借助换元进行转化:化生为熟,化繁为简.因此,下一步的首
要工作是考察并利用g(x)的单调性.
/(x)=42asin(x+—)4-(1-a)
解:由分析得'4'
•••定义在非零实数集上的奇函数g(x)在(0,+8)上是增函数,且g(2)=0,①
;.g(x)在(-8,0)上是增函数,且g(—2)=0②二由①②知,当x<-2或0<x<2
时,g(x)<0③
夜sin(x+工)=G则当x€[0,—e[1,f(x)=V2asin(x+—)+(1-a),xe[0,—]<=>
又设42.则42h(t)=
at+(1—a),内.
;.g[f(x)"0且xW[0,3]=g[h(t)]<0,且何Lq..•.由③得,当‘©口,”]
时,h(t)<-2或0〈h(t)<2④
注意至ljh(t)=at+(1—a)...由h(t)〈一2得h(1)<—2(a<0)或h(应)<-2(a>0),
1,0<A(l)<2
由0〈h(t)<2得1°<坏②<2,解得一忘一l<a<痣+1.于是综上可知,所求a的
取值范围为(一年T/+1).
点评:在这里,由③到④的转化,是由“抽象”向“具体”的转化,此为解题关键环节.
在下面的求解中,对0<h(t)<2亦可通过分类讨论来完成.
对于h(t)=at+(1-a)点],0<h⑴<2=h(t)>0且h(t)<2
(1)h(t)〉0,1=温>°⑤当a〉0时,h(t)在工点]上递增,.•.由
⑤得,h(l)>0,显然成立;
当a<0时,h(t)在口,/]上递减.•.由⑤得,h(应)>00(V2-1)a+l>0
~~0y/2+1)<a<0.
当a=0时,h(t)显然满足l〈h(t)〈2.因此由h(t)〉0,£€口,0]得一贬
-l〈aW0⑥
(2)h(t)<2,,HL历<2⑦当a>0时,h(t)在口,两上递增,,由⑦得,
h(血)<2<=>0<a<72+1.
当a〈0时,h(t)在口,[5]上递减.••由⑦得,h(l)<2,显然满足条件;当a=0时,
h(t)=1,显然满足条件.
因此由⑦得巧+1⑧于是综合(1)(2)知,由0〈h(t)<2推出
--1<a<5/^+1
五、高考真题
(一)选择题
sinar+cosaf=tana(0<a<—),则ore
1、(湖北卷)若2()
J啥B.(将)J"J需
分析:注意到我们对sin比+cosa的熟悉,故考虑从认知sina+cosa的范围入手,
去了解d的范围.
ae(O,今得sma+cosa=Qsin(a+;)e(L^].tanae(115/2]c(11^)
43
应选c.Y4
2、函数
y=sin(皈+⑵(x&R,a)>0,Q<(p<27f)
一
的部分图象如图,则()
013
穴穴
8=一,0=—
A.24
"7T
0=—,a)=—
B.36
7T7T
。=—,<p-—
C.44
7T5〃
0=一,0=一
D.44
T2汗汗..7F.
土=3—1=7=8<3=——=—y=sin(—x+/
分析:由图象得4.84,4
/兀、4_7T
sin(一+◎=10'。<2开,...04应选c.
又f(l)=l,二4注意到
(二)、填空题
1/加北山、7蝴y=k山Heosx-i
1、(湖北卷)函数”11的最小正周期与最大值的和
为o
分析:对于含有绝对值的三角函数的周期或值域,基本策略是化为分段函数,分段寻求
周期或范围,而后综合结论.
sin2x-1,sinx>0
y=<
--sin2x-1,sinx<0
2
(1)注意到sin2x的最小正周期看,而sinxNO的解区间重复出现的最小正周
期马=2",而看的最小公倍数为2开,故所求函数的最小正周期为2开.
2_2
(2)由分段函数知,y的最大值为2,于是由(1)(2)知应填2”2.
2、(辽宁卷)。是正实数,设%=©/lx)=cos画x+8)隹奇函数}若对每
个实数a,4口(&,。+1)的元素不超过两个,且有a使s3n(a,a+D含2个元素,则0
的取值范围是。
由f(x)=cos(Ox+如8)是奇函数得0)6=1(:兀+可(卜6Z)
分析:2
门k7T7C,,
8=—+—(AreZ)
r_<]=◊>%•
注意到有a使$3n111aM含有两个元素,.♦•相邻两色值之差。①
注意到$3口(°'°+1)的元素不超过两个,二相间的两个°值之差
—>1<=>®<2JC
®②
,由①、②得兀〈①《2无,应填(71,2K]
点评:对于(1),在考察了各个分支中三角函数的最小正周期后,还要考察各分
支中''不等式的解区间”重复出现的周期,二者结合才能得出正确结论.
对于(2),这里的e决定于f(X)在一个周期图象的左端点横坐标,由此便于认识
n
相邻两个e值之差*的意义.
(三)解答题
,/、1+cosZxX.X、
j(x)=---------asm—cos(7r--)
4sin(-+x)22
1、若函数2的最大值为2,试确定常数a的值.
分析:鉴于过去的经验,首先致力于将f(x)化为/$皿(皈+°)+k的形式,而后便
会一路坦途.
2co£x_asinxcosx^sinx+lcosx
解:4cosx22=22
+--sin(x+妙(其中辅助角。黄足sin0=、1
J44再下由已知得
[+匕=4,解得a=±岳
44
点评:本题看似简单,但考察多种三角公式,亦能体现考生的基本能力.
_7T
2、设函数,(x)=sm(2x+©)(一才<0<0),y=f(x)图象的一条对称轴是直线工_8.
(1)求S;(2)求函数y=f(x)的单调增区间:(3)证明直线5x—2y+c=0与
函数y=f(x)的图象不相切.
分析:对于(3),由于f(x)为三角函数,故需要利用导数的几何意义来解决直线与
图象的相切或不相切问题.其中,要证直线1与y=f(x)的图象不相切,只需证直线1的
斜率不属于y=f(x)图象匕点的切线斜率的取值集合.
_7T
sin(2x—+同=±1
解(1):8为函数,。)=$嫉2'+同图象的对称轴,
—+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代理电动车合同范例
- 借名买房合同范本
- 租赁合同通知函
- 农村收购单车合同范例
- 农村果园承包合同范本
- 云平台建设合同范本
- 云南租房合同范本
- 供应电水气合同范本
- 水电站隧道排水孔施工方案
- 乙方装修合同范本
- 2024-2025学年新教材高中化学 第三章 铁 金属材料 2.1 合金说课稿 新人教版必修1
- 《篮球防守脚步移动技术 滑步》教案
- 完整版项目部组织机构图
- 浙江省杭州市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 人工智能客服机器人使用手册
- 品牌全球化体育营销趋势洞察报告 2024
- 安徽省芜湖市普通高中2025届高考全国统考预测密卷物理试卷含解析
- (新版)拖拉机驾驶证科目一知识考试题库500题(含答案)
- (人卫版第九版传染病学总论(一))课件
- 工业机器人仿真与离线编程项目-8-KUKA-Sim-Pro-软件的介绍及基本操作
- 第2课++生涯规划+筑梦未来(课时2)【中职专用】中职思想政治《心理健康与职业生涯》高效课堂 (高教版基础模块)
评论
0/150
提交评论