2025届福建省龙岩市龙岩二中学数学九上期末复习检测试题含解析_第1页
2025届福建省龙岩市龙岩二中学数学九上期末复习检测试题含解析_第2页
2025届福建省龙岩市龙岩二中学数学九上期末复习检测试题含解析_第3页
2025届福建省龙岩市龙岩二中学数学九上期末复习检测试题含解析_第4页
2025届福建省龙岩市龙岩二中学数学九上期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省龙岩市龙岩二中学数学九上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,的直径为10,若圆心为坐标原点,则点与的位置关系是()A.点在上 B.点在外 C.点在内 D.无法确定2.如图物体由两个圆锥组成,其主视图中,.若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B. C. D.3.下列说法不正确的是()A.所有矩形都是相似的B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cmD.四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段4.二次函数图象的顶点坐标是()A. B. C. D.5.如图,二次函数y=ax1+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①1a+b=0;②4a﹣1b+c<0;③b1﹣4ac>0;④当y<0时,x<﹣1或x>1.其中正确的有()A.4个 B.3个 C.1个 D.1个6.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B. C. D.17.用配方法解一元二次方程,配方后的方程是()A. B. C. D.8.如图,在正方形网格中,线段A′B′是线段AB绕某点顺时针旋转一定角度所得,点A′与点A是对应点,则这个旋转的角度大小可能是()A.45° B.60° C.90° D.135°9.二次函数与坐标轴的交点个数是()A.0个 B.1个 C.2个 D.3个10.下列四个几何体中,左视图为圆的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为_____.12.小明身高1.76米,小亮身高1.6米,同一时刻他们站在太阳光下,小明的影子长为1米,则小亮的影长是_____米.13.如果关于的方程有两个相等的实数根,那么的值为________,此时方程的根为_______.14.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在M处,∠BEF=70°,则∠ABE=_____度.15.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为_____cm.16.在平面直角坐标系中,点为原点,抛物线与轴交于点,以为一边向左作正方形,点为抛物线的顶点,当是锐角三角形时,的取值范围是__________.17.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…18.一元二次方程(x﹣5)(x﹣7)=0的解为_____.三、解答题(共66分)19.(10分)如图1,在中,,以为直径的交于点.(1)求证:点是的中点;(2)如图2,过点作于点,求证:是的切线.20.(6分)在直角三角形中,,点为上的一点,以点为圆心,为半径的圆弧与相切于点,交于点,连接.(1)求证:平分;(2)若,求圆弧的半径;(3)在的情况下,若,求阴影部分的面积(结果保留和根号)21.(6分)某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?22.(8分)某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。23.(8分)如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式及其顶点Q的坐标;(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.24.(8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)请将条形统计图补充完整;(2)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(3)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表法或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.25.(10分)我市某校准备成立四个活动小组:.声乐,.体育,.舞蹈,.书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的值是;(2)请补全条形统计图;(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.26.(10分)已知关于的方程(1)无论取任何实数,方程总有实数根吗?试做出判断并证明你的结论.(2)抛物线的图象与轴两个交点的横坐标均为整数,且也为正整数.若,是此抛物线上的两点,且,请结合函数图象确定实数的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【分析】求出P点到圆心的距离,即OP长,与半径长度5作比较即可作出判断.【详解】解:∵,∴OP=,∵的直径为10,∴r=5,∵OP>5,∴点P在外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.2、D【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.3、A【解析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【详解】解:A.所有矩形对应边的比不一定相等,所以不一定都是相似的,A不正确,符合题意;B.若线段a=5cm,b=2cm,则a:b=5:2,B正确,不符合题意;C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cm,C正确,不符合题意;D.∵1:2=2:4,∴四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段,D正确,不符合题意;故选:A.【点睛】本题考查的是相似多边形的性质,矩形的性质,成比例线段,黄金分割,掌握它们的概念和性质是解题的关键.4、A【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵,∴二次函数图像顶点坐标为:.故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).5、B【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】∵二次函数y=ax1+bx+c(a≠0)的对称轴为x=1,∴﹣=1,得1a+b=0,故①正确;当x=﹣1时,y=4a﹣1b+c<0,故②正确;该函数图象与x轴有两个交点,则b1﹣4ac>0,故③正确;∵二次函数y=ax1+bx+c(a≠0)的对称轴为x=1,点B坐标为(﹣1,0),∴点A(3,0),∴当y<0时,x<﹣1或x>3,故④错误;故选B.【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6、B【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【详解】解:∵四张卡片中中心对称图形有平行四边形、圆,共2个,∴卡片上所画的图形恰好是中心对称图形的概率为,故选B.【点睛】此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,关键是找出卡片上所画的图形是中心对称图形的个数.7、C【分析】先移项变形为,再将两边同时加4,即可把左边配成完全平方式,进而得到答案.【详解】∵∴∴∴故选C.【点睛】本题考查配方法解一元二次方程,熟练掌握配方法的解法步骤是解题的关键.8、C【分析】如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.【详解】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角,∴旋转角为90°故选:C.【点睛】本题考查了图形的旋转,掌握作图的基本步骤是解题的关键9、B【分析】先计算根的判别式的值,然后根据b2−4ac决定抛物线与x轴的交点个数进行判断.【详解】∵△=22−4×1×2=−4<0,∴二次函数y=x2+2x+2与x轴没有交点,与y轴有一个交点.∴二次函数y=x2+2x+2与坐标轴的交点个数是1个,故选:B.【点睛】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数;△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.10、A【分析】根据三视图的法则可得出答案.【详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【点睛】错因分析较容易题.失分原因是不会判断常见几何体的三视图.二、填空题(每小题3分,共24分)11、22015π【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可知为圆的周长,再找出圆半径的规律即可解题.【详解】解:连接P1O1,P2O2,P3O3…,∵P1是⊙O1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,PnOn垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案为:22015π.【点睛】本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.12、【分析】利用同一时刻实际物体与影长的比值相等进而求出即可.【详解】设小亮的影长为xm,由题意可得:,解得:x=.故答案为:.【点睛】此题主要考查了相似三角形的应用,正确利用物体高度与影长的关系是解题关键.13、1【分析】根据题意,讨论当k=0时,符合题意,当时,一元二次方程有两个相等的实数根即,据此代入系数,结合完全平方公式解题即可.【详解】当k=0,方程为一元一次方程,没有两个实数根,故关于的方程有两个相等的实数根,即即故答案为:1;.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.14、1【分析】根据折叠的性质,得∠DEF=∠BEF=70°,结合平角的定义,得∠AEB=40°,由AD∥BC,即可求解.【详解】∵将长方形纸片ABCD折叠,使点D与点B重合,∴∠DEF=∠BEF=70°,∵∠AEB+∠BEF+∠DEF=180°,∴∠AEB=180°﹣2×70°=40°.∵AD∥BC,∴∠EBF=∠AEB=40°,∴∠ABE=90°﹣∠EBF=1°.故答案为:1.【点睛】本题主要考查折叠的性质,平角的定义以及平行线的性质定理,掌握折叠的性质,是解题的关键.15、1【分析】根据扇形面积公式和扇形的弧长公式之间的关系:S扇形,把对应的数值代入即可求得半径r的长.【详解】解:∵S扇形,∴,∴.故答案为1.【点睛】本题考查了扇形面积和弧长公式之间的关系,解此类题目的关键是掌握住扇形面积公式和扇形的弧长公式之间的等量关系:S扇形.16、或【分析】首先由抛物线解析式求出顶点A的坐标,然后再由对称轴可判定△AHP为等腰直角三角形,故当是锐角三角形时,,即可得出的取值范围.【详解】∵∴顶点A的坐标为令PB与对称轴相交于点H,如图所示∴PH=AH,即△AHP为等腰直角三角形∴当是锐角三角形时,,∴BP=OP,P(0,c)∴或故答案为或.【点睛】此题主要考查二次函数图象与几何图形的综合运用,解题关键是找出临界点直角三角形,即可得出取值范围.17、(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.18、x1=5,x2=7【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【分析】(1)连结CD,如图,根据圆周角定理得到∠CDB=90°,然后根据等腰三角形的性质易得点D是BC的中点;(2)连结OD,如图,先证明OD为△ABC的中位线,得到OD∥AC,由于DE⊥AC,则DE⊥OD,于是根据切线的判断定理得到DE是⊙O的切线【详解】(1)连接∵是的直径∴∴∴∴∴点是的中点(2)连接∵∴∵∴∴∴∴∵∴∴∴是的切线【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等腰三角形的性质、三角形中位线性质.20、(1)证明见解析;(2)2;(3).【分析】(1)连接,由BC是圆的切线得到,利用内错角相等,半径相等,证得;(2)过点作,根据垂径定理得到AH=1,由,利用勾股定理得到半径OA的长;(3)根据勾股定理求出BD的长,再分别求出△BOD、扇形POD的面积,即可得到阴影部分的面积.【详解】证明:(1)连接,为半径的圆弧与相切于点,,,又,,,平分(2)过点作,垂足为,,在四边形中,,四边形是矩形,,在中,;(3)在中,,,,∴.,,.【点睛】此题考查切线的性质,垂径定理,扇形面积公式,已知圆的切线即可得到垂直的关系,圆的半径,弦长,弦心距,根据勾股定理与垂径定理即可求得三个量中的一个.21、每件商品售价60元或50元时,该商店销售利润达到1200元.【分析】根据题意得出,(售价-成本)(原来的销量+2降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价元时,该商店销售利润为1200元.根据题意,得整理得:,解这个方程得:,.所以,或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.22、(1)50,12;(2)5,4;(3)336.【分析】(1)先由6篇的人数及其所占百分比求得总人数,总人数减去其他篇数的人数求得m的值;(2)根据中位数和众数的定义求解;(3)用总人数乘以样本中4篇的人数所占比例即可得.【详解】解:(1)被调查的总人数为8÷16%=50人,m=50-(10+14+8+6)=12;(2)由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇;(3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为人.【点睛】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作图见解析;(3)①不正确,理由见解析;②不能,理由见解析.【分析】(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中即可确定b、c的值,然后配方后即可确定其顶点坐标;(2)连接BC,交对称轴于点P,连接AP、AC.求得C点的坐标后然后确定直线BC的解析式,最后求得其与x=2与直线BC的交点坐标即为点P的坐标;(3)①设D(t,-t2+4t+1),设折线D-E-O的长度为L,求得L的最大值后与当点D与Q重合时L=9+2=11<相比较即可得到答案;②假设四边形DCEB为平行四边形,则可得到EF=DF,CF=BF.然后根据DE∥y轴求得DF,得到DF>EF,这与EF=DF相矛盾,从而否定是平行四边形.【详解】解:(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如图1,连接BC,交对称轴于点P,连接AP、AC.∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小.∵点A关于对称轴x=2的对称点是点B(1,0),抛物线y=-x2+4x+1与y轴交点C的坐标为(0,1).∴由几何知识可知,PA+PC=PB+PC为最小.设直线BC的解析式为y=kx+1,将B(1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴当x=2时,y=3,∴点P的坐标为(2,3).(3)①这个同学的说法不正确.∵设D(t,-t2+4t+1),设折线D-E-O的长度为L,则L=−t2+4t+1+t=−t2+1t+1=−(t−)2+,∵a<0,∴当t=时,L最大值=.而当点D与Q重合时,L=9+2=11<,∴该该同学的说法不正确.②四边形DCEB不能为平行四边形.如图2,若四边形DCEB为平行四边形,则EF=DF,CF=BF.∵DE∥y轴,∴,即OE=BE=2.1.当xF=2.1时,yF=-2.1+1=2.1,即EF=2.1;当xD=2.1时,yD=−(2.1−2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF>EF,这与EF=DF相矛盾,∴四边形DCEB不能为平行四边形.【点睛】本题考查二次函数及四边形的综合,难度较大.24、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论