安徽省阜阳市2022年数学高三第一学期期末检测试题含解析_第1页
安徽省阜阳市2022年数学高三第一学期期末检测试题含解析_第2页
安徽省阜阳市2022年数学高三第一学期期末检测试题含解析_第3页
安徽省阜阳市2022年数学高三第一学期期末检测试题含解析_第4页
安徽省阜阳市2022年数学高三第一学期期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数满足约束条件,则的最小值为()A.-5 B.2 C.7 D.112.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.3.函数在区间上的大致图象如图所示,则可能是()A.B.C.D.4.已知等差数列的前项和为,若,,则数列的公差为()A. B. C. D.5.函数的定义域为()A. B. C. D.6.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题7.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.8.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若复数是纯虚数,则实数的值为()A.或 B. C. D.或10.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)11.已知集合,则集合()A. B. C. D.12.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3 B.2 C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.已知,则=___________,_____________________________14.已知向量满足,且,则_________.15.在平面直角坐标系xOy中,已知A0,a,B3,a+416.不等式的解集为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.18.(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求与的回归直线方程;②叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,19.(12分)在锐角中,,,分别是角,,所对的边,的面积,且满足,则的取值范围是()A. B. C. D.20.(12分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,,且平面平面,点在线段上移动(不与重合),是的中点.(1)当四面体的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.21.(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,,,且满足.(1)求;(2)若,,求的最大值.22.(10分)在△ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求△ABC的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.2、D【解析】

试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.3、B【解析】

根据特殊值及函数的单调性判断即可;【详解】解:当时,,无意义,故排除A;又,则,故排除D;对于C,当时,,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.4、D【解析】

根据等差数列公式直接计算得到答案.【详解】依题意,,故,故,故,故选:D.【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.5、C【解析】

函数的定义域应满足故选C.6、D【解析】

举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.7、B【解析】

通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.8、A【解析】

将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.9、C【解析】试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.考点:纯虚数10、B【解析】

根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。11、D【解析】

弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又,,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.12、C【解析】

根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、−196−3【解析】

由二项式定理及二项式展开式通项得:,令x=1,则1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【详解】由二项式(1−2x)7展开式的通项得,则,令x=1,则,所以a0+a1+…+a7=−3,故答案为:−196,−3.【点睛】本题考查二项式定理及其通项,属于中等题.14、【解析】

由数量积的运算律求得,再由数量积的定义可得结论.【详解】由题意,∴,即,∴.故答案为:.【点睛】本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键.15、(-53,【解析】

求出AB的长度,直线方程,结合△ABC的面积为5,转化为圆心到直线的距离进行求解即可.【详解】解:AB的斜率k=a+4-a3-0=4=3设△ABC的高为h,则∵△ABC的面积为5,∴S=12|AB|h=即h=2,直线AB的方程为y﹣a=43x,即4x﹣3y+3若圆x2+y2=9上有且仅有四个不同的点C,则圆心O到直线4x﹣3y+3a=0的距离d=|3a|则应该满足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案为:(-53,【点睛】本题主要考查直线与圆的位置关系的应用,求出直线方程和AB的长度,转化为圆心到直线的距离是解决本题的关键.16、【解析】

通过平方,将无理不等式化为有理不等式求解即可。【详解】由得,解得,所以解集是。【点睛】本题主要考查无理不等式的解法。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】

(1)消去参数可得圆的直角坐标方程,再根据,,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,∵,,.∴,.(2)∵直线:的极坐标方程为,当时.即:,∴或.∴或,∴直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.18、(1)见解析,12.5(2)①②20【解析】

(1)运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;(2)①由公式可计算的值,进而可求与的回归直线方程;②求出,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时的值.【详解】解:(1)抽样比为,所以分别是,6,7,8,5所以两数之和所有可能取值是:10,12,13,15,,,所以分布列为期望为(2)因为所以,,;②,设,所以当递增,当递减所以约惠值最大值时的值为20【点睛】本题考查直方图的实际应用,涉及求概率,平均数、拟合直线和导数等问题,关键是要读懂题意,属于中档题.19、A【解析】

由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.【详解】由题意,在锐角中,满足,由正弦定理可得,即,可得,所以,即,所以,所以,则,所以,可得,又由的面积,所以,则.故选:A.【点睛】本题主要考查了正弦定理、余弦定理的应用,以及三角形的面积公式和正切的倍角公式的综合应用,着重考查了推理与运算能力,属于中档试题.20、(1)证明见解析(2)【解析】

(1)由题意,先求得为的中点,再证明平面平面,进而可得结论;(2)由题意,当点位于点时,四面体的体积最大,再建立空间直角坐标系,利用空间向量运算即可.【详解】(1)证明:当四面体的外接球的表面积为时.则其外接球的半径为.因为时边长为2的菱形,是矩形.,且平面平面.则,.则为四面体外接球的直径.所以,即.由题意,,,所以.因为,所以为的中点.记的中点为,连接,.则,,,所以平面平面.因为平面,所以平面.(2)由题意,平面,则三棱锥的高不变.当四面体的体积最大时,的面积最大.所以当点位于点时,四面体的体积最大.以点为坐标原点,建立如图所示的空间直角坐标系.则,,,,.所以,,,.设平面的法向量为.则令,得.设平面的一个法向量为.则令,得.设平面与平面所成锐二面角是,则.所以当四面体的体积最大时,平面与平面所成锐二面角的余弦值为.【点睛】本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键,属于基础题.21、(1)(2)【解析】

(1)利用正弦定理和余弦定理化简,根据勾股定理逆定理求得.(2)设,由此求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设,,,由,根据正弦定理和余弦定理得.化简整理得.由勾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论