2025届安徽省合肥市庐江县汤池镇初级中学九上数学期末复习检测模拟试题含解析_第1页
2025届安徽省合肥市庐江县汤池镇初级中学九上数学期末复习检测模拟试题含解析_第2页
2025届安徽省合肥市庐江县汤池镇初级中学九上数学期末复习检测模拟试题含解析_第3页
2025届安徽省合肥市庐江县汤池镇初级中学九上数学期末复习检测模拟试题含解析_第4页
2025届安徽省合肥市庐江县汤池镇初级中学九上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省合肥市庐江县汤池镇初级中学九上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是()A. B. C. D.2.二次函数y=(x-1)2-5的最小值是()A.1 B.-1 C.5 D.-53.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.5πcm4.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(-4,0),对称轴为直线x=-1,下列结论:①abc>0;②1a-b=0;③一元二次方程ax1+bx+c=0的解是x1=-4,x1=1;④当y>0时,-4<x<1.其中正确的结论有(

)A.4个 B.3个 C.1个 D.1个5.二次函数(是常数,)的自变量与函数值的部分对应值如下表:…012………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0 B.1 C.2 D.36.如图,在正方形中,以为边作等边,延长分别交于点,连接与相交于点,给出下列结论:①;②;③;④;其中正确的是()A.①②③④ B.②③ C.①②④ D.①③④7.如图,在平面直角坐标系中,若反比例函数过点,则的值为()A. B. C. D.8.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A.9m B.12m C.8m D.10m9.抛物线的顶点坐标是()A.(0,-1) B.(-1,1) C.(-1,0) D.(1,0)10.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为()A. B. C. D.11.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.12.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,中,点、分别是边、的中点,、分别交对角线于点、,则______.14.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.15.为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有________条.16.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.17.若是方程的一个根,则的值是________.18.如果3a=4b(a、b都不等于零),那么a+bb=_____三、解答题(共78分)19.(8分)如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.20.(8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.21.(8分)如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点,其顶点为点,点的坐标为(0,-1),该抛物线与交于另一点,连接.(1)求该抛物线的解析式,并用配方法把解析式化为的形式;(2)若点在上,连接,求的面积;(3)一动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动,连接,,设运动时间为秒(>0),在点的运动过程中,当为何值时,?22.(10分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.23.(10分)用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣1.(2)x2+5x﹣4=2.24.(10分)先化简:,再求代数式的值,其中是方程的一个根.25.(12分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为),另外三边利用学校现有总长的铁栏围成,留出2米长门供学生进出.若围成的面积为,试求出自行车车棚的长和宽.26.在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F(I)如图①,连接AD,若,求∠B的大小;(Ⅱ)如图②,若点F为的中点,的半径为2,求AB的长.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选C.考点:几何概率.2、D【分析】根据顶点式解析式写出即可.【详解】二次函数y=(x-1)2-1的最小值是-1.故选D.【点睛】本题考查了二次函数的最值问题,比较简单.3、C【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm,则重物上升了3πcm,故选C.考点:旋转的性质.4、B【分析】根据抛物线的图象与性质(对称性、与x轴、y轴的交点)逐个判断即可.【详解】∵抛物线开口向下∵对称轴同号,即∵抛物线与y轴的交点在x轴的上方,则①正确∵对称轴,即,则②正确∵抛物线的对称轴,抛物线与x轴的一个交点是∴由抛物线的对称性得,抛物线与x轴的另一个交点坐标为,从而一元二次方程的解是,则③错误由图象和③的分析可知:当时,,则④正确综上,正确的结论有①②④这3个故选:B.【点睛】本题考查了二次函数的图象与性质,熟记函数的图象与性质是解题关键.5、C【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-=;∴a、b异号,且b=-a;∵当x=0时y=c=-2∴c∴abc0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴和3是关于的方程的两个根;故②正确;∵b=-a,c=-2∴二次函数解析式:∵当时,与其对应的函数值.∴,∴a;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4;故③错误故选C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.6、A【分析】根据等边三角形、正方形的性质求得∠ABE=30°,利用直角三角形中30°角的性质即可判断①;证得PC=CD,利用三角形内角和定理即可求得∠PDC,可求得∠BPD,即可判断②;求得∠FDP=15°,∠PBD=15°,即可证明△PDE∽△DBE,判断③正确;利用相似三角形对应边成比例可判断④.【详解】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,∴,

∴;故①正确;

∵PC=CD,∠PCD=30°,

∴∠PDC=∠CPD===75°,∴∠BPD=∠BPC+∠CPD=60°+75°=135°,故②正确;

∵∠PDC=75°,∴∠FDP=∠ADC-∠PDC=90°-75°=15°,

∵∠DBA=45°,

∴∠PBD=∠DBA-∠ABE=45°-30°=15°,

∴∠EDP=∠EBD,

∵∠DEP=∠DEP,

∴△PDE∽△DBE,故③正确;

∵△PDE∽△DBE,∴,即,故④正确;综上:①②③④都是正确的.

故选:A.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.7、C【解析】把代入求解即可.【详解】反比例函数过点,,故选:.【点睛】本题考查反比例函数图象上的点的特征,解题的关键是熟练掌握基本知识,属于中考常考题型.8、A【分析】根据三角形的中位线定理解答即可.【详解】解:∵A、B分别是CD、CE的中点,DE=18m,∴AB=DE=9m,故选:A.【点睛】本题考查了三角形的中位线定理:三角形的中位线平行于第三边并且等于第三边的一半.9、C【解析】用配方法将抛物线的一般式转化为顶点式,可确定顶点坐标.解答:解:∵y=x2+2x+1=(x+1)2,∴抛物线顶点坐标为(-1,0),故选C.10、A【分析】由可得∠APB=90°,根据AB是定长,由定长对定角可知P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,用DO减去圆的半径即可得出最小值.【详解】解:∵,∴∠APB=90°,∵AB=6是定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,如图所示:∵,,∴,由勾股定理得:DO=5,∴,即的长的最小值为2,故选A.【点睛】本题属于综合难题,主要考查了直径所对的角是圆周角的应用:由定弦对定角可得动点的轨迹是圆,发现定弦和定角是解题的关键.11、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.12、B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,∴从袋子中随机摸出一个球,它是黄球的概率为:.故选B.二、填空题(每题4分,共24分)13、【分析】由四边形ABCD是平行四边形可得AD∥BC,AD=BC,△DEH∽△BCH,进而得,连接AC,交BD于点M,如图,根据三角形的中位线定理可得EF∥AC,可推得,△EGH∽△CMH,于是得DG=MG,,设HG=a,依次用a的代数式表示出MH、DG、BH,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEH∽△BCH,∵E是AD中点,AD=BC,∴,连接AC,交BD于点M,如图,∵点、分别是边、的中点,∴EF∥AC,∴,△EGH∽△CMH,∴DG=MG,,设HG=a,则MH=2a,MG=3a,∴DG=3a,∴DM=6a,∵四边形ABCD是平行四边形,∴BM=DM=6a,BH=8a,∴.故答案为:.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、相似三角形的判定和性质、三角形的中位线定理等知识,连接AC,充分利用平行四边形的性质、构建三角形的中位线和相似三角形的模型是解题的关键.14、2【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用.15、10000【解析】试题解析:设该水库中鲢鱼约有x条,由于李老板先捞上150条鲢鱼并在上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,数一数带红色记号的鱼有三条,由此依题意得200:3=x:150,∴x=10000,∴估计出该水库中鲢鱼约有10000条.16、1【分析】根据旋转性质及直角三角形两锐角互余,可得△E′CB是等边三角形,从而得出∠ACE′的度数,再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数.【详解】解:根据题意和旋转性质可得:CE´=CE=BC,∵三角板是两块大小一样且含有1°的角,∴∠B=60°∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=1°,故答案为:1.【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到△ABC等边三角形.17、1【分析】将代入方程,得到,进而得到,,然后代入求值即可.【详解】解:由题意,将代入方程∴,,∴故答案为:1【点睛】本题考查一元二次方程的解,及分式的化简,掌握方程的解的概念和平方差公式是本题的解题关键.18、7【解析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【详解】∵3a=4b(a、b都不等于零),∴设a=4x,则b=3x,那么a+ba故答案为:73【点睛】此题主要考查了比例的性质,正确表示出a,b的值是解题关键.三、解答题(共78分)19、(1)作图见解析;(2)证明见解析.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可.(2)根据中位线定理易得△DEF∽△CAB,△D'E'F'∽△C'A'B',故可得△DEF∽△D'E'F'.【详解】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即为所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴;(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴△DEF∽△CAB,同理:△D'E'F'∽△C'A'B',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.20、(1)证明见解析;(2)【解析】试题分析:(1)连接OE,证得OE⊥AC即可确定AC是切线;

(2)根据OE∥BC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.试题解析:解:(1)连接OE.∵OB=OE,∴∠OBE=∠OEB.∵∠ACB=90°,∴∠CBE+∠BEC=90°.∵BD为⊙O的直径,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OE∥BC,∴∠OEA=∠ACB=90°,即OE⊥AC,∴AC为⊙O的切线.(2)∵OE∥BC,∴△AOE∽△ABC,∴OE:BC=AE:AC.∵CE:AE=2:3,∴AE:AC=3:1,∴OE:BC=3:1.∵OE∥BC,∴△OEF∽△CBF,∴.点睛:本题考查了切线的判定,在解决切线问题时,常常连接圆心和切点,证明垂直或根据切线得到垂直.21、(1);(2);(3)【解析】(1)将A,B两点的坐标代入抛物线解析式中,得到关于a,b的方程组,解之求得a,b的值,即得解析式,并化为顶点式即可;(2)过点A作AH∥y轴交BC于H,BE于G,求出直线BC,BE的解析式,继而可以求得G、H点的坐标,进一步求出GH,联立BE与抛物线方程求出点F的坐标,然后根据三角形面积公式求出△FHB的面积;(3)设点M坐标为(2,m),由题意知△OMB是直角三角形,进而利用勾股定理建立关于m的方程,求出点M的坐标,从而求出MD,最后求出时间t.【详解】(1)∵抛物线与轴交于A(1,0),B(3,0)两点,∴∴∴抛物线解析式为.(2)如图1,

过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直线BC解析式为y=x-2,∵H(1,y)在直线BC上,∴y=-,∴H(1,-),∵B(3,0),E(0,-1),∴直线BE解析式为y=-x-1,∴G(1,-),∴GH=,∵直线BE:y=-x-1与抛物线y=-x2+x-2相较于F,B,∴F(,-),∴S△FHB=GH×|xG-xF|+GH×|xB-xG|=GH×|xB-xF|=××(3-)=.(3)如图2,由(1)有y=-x2+x-2,∵D为抛物线的顶点,∴D(2,),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M(2,m),(m>),∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m=或m=-(舍),∴M(2,),∴MD=-,∴t=-.【点睛】本题考查了待定系数法求二次函数的表达式,待定系数法求一次函数表达式,角平分线上的点到两边的距离相等,勾股定理等知识点,综合性比较强,不仅要掌握性质定理,作合适的辅助线也对解题起重要作用.22、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.【点睛】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.23、(1)x=2.5或x=2;(2)x=.【分析】(1)利用因式分解法求解可得;

(2)利用公式法求解可得.【详解】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=2,∴(2x﹣5)(x﹣2)=2,则2x﹣5=2或x﹣2=2,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>2,则x=.【点睛】本题考查因式分解法、公式法解一元二次方程,解题的关键是掌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论