![广东省深圳市育才中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M0A/2D/23/wKhkGWZ3AEGAdL5qAAH7jgV7ZFc035.jpg)
![广东省深圳市育才中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M0A/2D/23/wKhkGWZ3AEGAdL5qAAH7jgV7ZFc0352.jpg)
![广东省深圳市育才中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M0A/2D/23/wKhkGWZ3AEGAdL5qAAH7jgV7ZFc0353.jpg)
![广东省深圳市育才中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M0A/2D/23/wKhkGWZ3AEGAdL5qAAH7jgV7ZFc0354.jpg)
![广东省深圳市育才中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M0A/2D/23/wKhkGWZ3AEGAdL5qAAH7jgV7ZFc0355.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市育才中学2025届高一数学第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:).记甲组数据的众数与中位数分别为,乙组数据的众数与中位数分别为,则()A. B.C. D.2.已知函数,若存在,且,使成立,则以下对实数的推述正确的是()A. B. C. D.3.已知在中,两直角边,,是内一点,且,设,则()A. B. C.3 D.4.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.5.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为A.2 B.4 C.6 D.86.终边在轴上的角的集合()A. B.C. D.7.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.568.已知圆截直线所得弦的长度为4,则实数a的值是A. B. C. D.9.在中,内角所对的边分别是,若,则角的值为()A. B. C. D.10.在边长为1的等边三角形ABC中,D是AB的中点,E为线段AC上一动点,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算__________.12.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.13.已知,若数列满足,,则等于________14.在中,已知,,,则角__________.15.把数列的各项排成如图所示三角形状,记表示第m行、第n个数的位置,则在图中的位置可记为____________.16.若,则=_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.向量,,,函数.(1)求的表达式,并在直角坐标中画出函数在区间上的草图;(2)若方程在上有两个根、,求的取值范围及的值.18.已知数列{bn}的前n项和,n∈N*.(1)求数列{bn}的通项公式;(2)记,求数列{cn}的前n项和Sn;(3)在(2)的条件下,记,若对任意正整数n,不等式恒成立,求整数m的最大值.19.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?20.在中,三个内角所对的边分别为,满足.(1)求角的大小;(2)若,求,的值.(其中)21.已知数列的前项和为(1)证明:数列是等差数列;(2)设,求数列的前2020项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.2、A【解析】
先根据的图象性质,推得函数的单调区间,再依据条件分析求解.【详解】解:是把的图象中轴下方的部分对称到轴上方,函数在上递减;在上递增.函数的图象可由的图象向右平移1个单位而得,在,上递减,在,上递增,若存在,,,,使成立,故选:.【点睛】本题考查单调函数的性质、反正切函数的图象性质及函数的图象的平移.图象可由的图象向左、向右平移个单位得到,属于基础题.3、A【解析】分析:建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D点坐标为(m,),由平面向量坐标表示,可求出λ和μ.详解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),因为∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则.故选A.点睛:本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.4、B【解析】
根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.5、A【解析】
根据平均数相同求出x的值,再根据方差的定义计算即可.【详解】根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均数为=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故选A.【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.6、D【解析】
根据轴线角的定义即可求解.【详解】A项,是终边在轴正半轴的角的集合;B项,是终边在轴的角的集合;C项,是终边在轴正半轴的角的集合;D项,是终边在轴的角的集合;综上,D正确.故选:D【点睛】本题主要考查了轴线角的判断,属于基础题.7、A【解析】由等差数列的性质得,,其前项之和为,故选A.8、B【解析】试题分析:圆化为标准方程为,所以圆心为(-1,1),半径,弦心距为.因为圆截直线所得弦长为4,所以.故选B.9、C【解析】
利用正弦定理,求得,再利用余弦定理,求得,即可求解.【详解】在,因为,由正弦定理可化简得,即,由余弦定理得,因为,所以,故选C.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.10、B【解析】
由题意,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,得到,,以及直线的方程,设出点E坐标,根据向量数量积,直接计算,即可得出结果.【详解】如图,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,因为等边三角形的边长为1,所以,,,,则直线的方程为,整理得,因为E为线段AC上一动点,设,,则,,所以,因为,所以在上单调递减,在上单调递增,所以的最小值为,最大值为.即的取值范围为.故选B【点睛】本题主要考查平面向量的数量积,利用建立坐标系的方法求解即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
采用分离常数法对所给极限式变形,可得到极限值.【详解】.【点睛】本题考查分离常数法求极限,难度较易.12、.【解析】
分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.13、【解析】
根据首项、递推公式,结合函数的解析式,求出的值,可以发现数列是周期数列,求出周期,利用数列的周期性可以求出的值.【详解】,所以数列是以5为周期的数列,因为20能被5整除,所以.【点睛】本题考查了数列的周期性,考查了数学运算能力.14、【解析】
先由正弦定理得到角A的大小,再由三角形内角和为得到结果.【详解】根据三角形正弦定理得到:,故得到或,因为故得到故答案为.【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.15、【解析】
利用第m行共有个数,前m行共有个数,得的位置即可求解【详解】因为第m行共有个数,前m行共有个数,所以应该在第11行倒数第二个数,所以的位置为.故答案为:【点睛】本题考查等差数列的通项和求和公式,发现每行个数成等差是关键,是基础题16、【解析】
∵,∴∴=1×[+]=1.故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),见解析(2)或,或.【解析】
(1)根据数量积的坐标表示,二倍角公式,辅助角公式即可求出的表达式,再根据五点作图法或者平移法即可作出其在上的草图;(2)依题意知,函数在上的图象与直线有两个交点,根据数形结合,即可求出的取值范围及的值.【详解】(1)依题知,.将正弦函数的图象向右平移个单位,再将各点的横坐标变为原来的,即可得到的图象,截取的部分即得,如图所示:(2)依题可知,函数在上的图象与直线有两个交点,根据数形结合,可知,或,当时,两交点关于直线对称,所以;当时,两交点关于直线对称,所以.故或,或.【点睛】本题主要考查数量积的坐标表示,二倍角公式,辅助角公式的应用,正弦型函数图象的画法,以及方程的根与两函数图象交点的个数关系的应用,意在考查学生的数学运算能力,数形结合能力,以及转化能力,属于中档题.18、(1)bn=3n﹣2,n∈N*.(2);(3)最大值为1.【解析】
(1)利用,求得数列的通项公式.(2)利用裂项求和法求得数列的前项和.(3)由(2)求得的表达式,记不等式左边为,利用差比较法判断出的单调性,进而求得的最小值,由此列不等式求得的取值范围,进而求得整数的最大值.【详解】(1)∵数列{bn}的前n项和,n∈N*.∴①当n=1时,b1=T1=1;②当n≥2时,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;设f(n);则f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值为f(1);∵对任意正整数n,不等式恒成立,∴恒成立,即m<12;故整数m的最大值为1.【点睛】本小题主要考查已知求,考查裂项求和法,考查数列单调性的判断方法,考查不等式恒成立问题的求解,属于中档题.19、(1)1;(2)﹣6【解析】
(1)利用单位向量的定义,直接运算即可;(2)利用,有,得出,然后列方程求解即可【详解】解:(1);(2)当,则存在实数使,所以不共线,得,【点睛】本题考查向量平行的定义,注意列方程运算即可,属于简单题20、(1);(2)4,6【解析】
(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知与为一个一元二次方程的两个解,求出方程的解,根据大于,可得出,的值.【详解】(1)已知等式,利用正弦定理化简得,整理得,即,,则.(2)由,得,①又由(1),②由余弦定理得,将及①代入得,,,③由②③可知与为一个一元二次方程的两个根,解此方程,并由大于,可得.【点睛】以三角形和平面向量为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 氯丙嗪类中毒病因介绍
- 开题报告:中国技能型社会建设测度模型、驱动因素及路径优化研究
- 《流行歌曲中飞出的》课件
- 开题报告:学位法制定的相关问题研究
- 开题报告:新时代西部乡村教师内源式专业发展模型构建与支持体系研究
- 2024年大班体育教案反思《勇敢的解放军》
- 2024年夫妻名下公司分割自愿离婚合同版B版
- 2024年国际货物运输安全与环境保护公约
- 2024年公司长期股权激励约束条款合同版B版
- 中考地理总复习专题18 中国的地势、地形和气候(梯级进阶练)(解析版)
- 新华都集团二十周年庆典宣传片脚本创意方案
- 长输管线无损检测方案
- 省市两级公文传输进省厅公文流转系统建设方案
- 关于提高公安民警队伍素质的调研报告
- 国家基本药物目录(最新版)
- HPV病毒的常用通用引物检测
- 建筑消防设施维修保养检测方案(完整版)
- CJJ_T98-2014建筑给水塑料管道工程技术规程
- CP控制计划编制作业指导书
- 学校图书管理工作领导小组及职责
- 新人教版三年级上册数学第七单元《长方形和正方形复习课》名师教学设计
评论
0/150
提交评论