河南周口市2025届数学高一下期末联考试题含解析_第1页
河南周口市2025届数学高一下期末联考试题含解析_第2页
河南周口市2025届数学高一下期末联考试题含解析_第3页
河南周口市2025届数学高一下期末联考试题含解析_第4页
河南周口市2025届数学高一下期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南周口市2025届数学高一下期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.根据频数分布表,可以估计在这堆苹果中,质量大于130克的苹果数约占苹果总数的()分组频数13462A. B. C. D.2.截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱 B.圆锥 C.球 D.圆台3.等差数列中,若,则=()A.11 B.7 C.3 D.24.△中,已知,,,如果△有两组解,则的取值范围()A. B. C. D.5.函数的部分图象如图所示,为了得到的图象,只需将的图象A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位6.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为的正三角形,E,F分别是PA,AB的中点,∠CEF=90°.则球O的体积为()A. B. C. D.7.如图所示,等边的边长为2、为的中点,且也是等边三角形,若以点为中心按逆时针方向旋转后到达的位置,则在转动过程中的取值范围是()A. B. C. D.8.在中,,,分别是角,,的对边,且满足,那么的形状一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形9.已知直线(3-2k)x-y-6=0不经过第一象限,则k的取值范围为()A.-∞,32 B.-∞,3210.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设等比数列满足a1+a2=–1,a1–a3=–3,则a4=___________.12.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.13.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.14.在△ABC中,若a2=b2+bc+c2,则A=________.15.已知,则的值是______.16.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,是边长为的正三角形,点四等分线段.(Ⅰ)求的值;(Ⅱ)若点是线段上一点,且,求实数的值.18.已知数列an的前n项和为S(1)求数列an(2)设bn=an·log219.已知函数(其中)的图象如图所示:(1)求函数的解析式及其对称轴的方程;(2)当时,方程有两个不等的实根,求实数的取值范围,并求此时的值.20.如图,三棱柱的侧面是边长为的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.21.已知向量,,函数.(1)若,,求的值;(2)若函数在区间上是单调递增函数,求正数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据频数分布表计算出质量大于130克的苹果的频率,由此得出正确选项.【详解】根据频数分布表可知,所以质量大于克的苹果数约占苹果总数的.故选:C【点睛】本小题主要考查频数分析表的阅读与应用,属于基础题.2、C【解析】

试题分析:圆柱截面可能是矩形;圆锥截面可能是三角形;圆台截面可能是梯形,该几何体显然是球,故选C.3、A【解析】

根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.4、D【解析】由正弦定理得A+C=180°-60°=120°,

由题意得:A有两个值,且这两个值之和为180°,

∴利用正弦函数的图象可得:60°<A<120°,

若A=90,这样补角也是90°,一解,不合题意,<sinA<1,

∵x=sinA,则2<x<故选D5、B【解析】试题分析:由图象知,,,,,得,所以,为了得到的图象,所以只需将的图象向右平移个长度单位即可,故选D.考点:三角函数图象.6、D【解析】

计算可知三棱锥P-ABC的三条侧棱互相垂直,可得球O是以PA为棱的正方体的外接球,球的直径,即可求出球O的体积.【详解】在△PAC中,设,,,,因为点E,F分别是PA,AB的中点,所以,在△PAC中,,在△EAC中,,整理得,因为△ABC是边长为的正三角形,所以,又因为∠CEF=90°,所以,所以,所以.又因为△ABC是边长为的正三角形,所以PA,PB,PC两两垂直,则球O是以PA为棱的正方体的外接球,则球的直径,所以外接球O的体积为.故选D.【点睛】本题考查了三棱锥的外接球,考查了学生的空间想象能力,属于中档题.7、D【解析】

设,,则,则,将其展开,运用向量的数量积的定义,化简得到,再由余弦函数的性质,即可得到范围.【详解】设,,则,则,由于,则,则.故选:D【点睛】本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.8、C【解析】

由正弦定理,可得,.,或,或,即或,即三角形为等腰三角形或直角三角形,故选C.考点:1正弦定理;2正弦的二倍角公式.9、D【解析】

由题意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范围.【详解】直线y=(3﹣2k)x﹣6不经过第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3则k的取值范围是[32故选:D.【点睛】本题考查直线方程的运用,注意运用直线的斜率为0的情况,考查运算能力,属于基础题.10、D【解析】

由题意得到,再由两角差的余弦及同角三角函数的基本关系式化简求解.【详解】解:∵角与角均以Ox为始边,它们的终边关于y轴对称,

∴,

故选:D.【点睛】本题考查了两角差的余弦公式的应用,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-8【解析】设等比数列的公比为,很明显,结合等比数列的通项公式和题意可得方程组:,由可得:,代入①可得,由等比数列的通项公式可得.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.12、(4,5)4.【解析】

根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.13、1【解析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.14、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A为△ABC的内角,∴A=120°故答案为:120°15、【解析】

根据两角差的正切公式即可求解【详解】故答案为:【点睛】本题考查两角差的正切公式的用法,属于基础题16、【解析】

代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【详解】.故答案为:2【点睛】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)以作为基底,表示出,然后利用数量积的运算法则计算即可求出;(Ⅱ)由平面向量数量积的运算及其运算可得:设,又,所以,解得,得解.【详解】(Ⅰ)由题意得,则(Ⅱ)因为点Q是线段上一点,所以设,又,所以,故,解得,因此所求实数m的值为.【点睛】本题主要考查了平面向量的线性运算以及数量积的运算以及平面向量基本定理的应用,属于中档题.18、(1)an=【解析】

(1)利用an=S(2)利用错位相减法可求Tn【详解】(1)因为Sn=2整理得到an=4,n=1(2)因为bn所以Tn2T所以-Tn【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.19、(1),;(2),.【解析】

(1)根据图像得A=2,利用,求ω值,再利用时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由得,方程f(x)=2a﹣3有两个不等实根转为f(x)的图象与直线y=2a﹣3有两个不同的交点,从而可求得a的取值范围,利用图像的性质可得的值.【详解】(1)由图知,,解得ω=2,f(x)=2sin(2x+φ),当时,函数取得最大值,可得,即,,解得,又所以,故,令则,所以的对称轴方程为;(2),所以方程有两个不等实根时,的图象与直线有两个不同的交点,可得,当时,,有,故.【点睛】本题考查由y=Asin(ωx+φ)的部分图象确定函数解析式,考查函数y=Asin(ωx+φ)的图象及性质的综合应用,属于中档题.20、(1)见解析(2)【解析】

(1)利用直线与平面垂直的判定,结合三角形全等判定,得到,再次结合三角形全等,即可.(2)法一:建立坐标系,分别计算的法向量,结合两向量夹角为直角,计算出的值,然后结合,即可.法二:设出OA=x,用x分别表示AB,BD,AD,结合,建立方程,计算x,结合,即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以平面,而平面,所以,因为,所以,而,所以,.(2)因为,,所以,(法一)以为坐标原点,所以直线为轴,所以直线为轴,所以直线为轴建立如图所示空间直角坐标系,设,则,,,,,所以,,,设平面的法向量,所以令,则,,取,设平面的法向量,所以令,则,,取,依题意得,解得.所以.(法二)过作,连结,由(1)知,所以且,所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本道题考查了直线与平面垂直判定,考查了利用空间向量解决二面角问题,难度较难.21、(1);(2)【解析】

(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由,结合的范围以及平方关系得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论