版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省射洪中学2025届高一数学第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人2.已知,若关于x的不等式的解集为,则()A. B. C.1 D.73.已知数列满足,,且,则A.4 B.5 C.6 D.84.过点作圆的切线,且直线与平行,则与间的距离是()A. B. C. D.5.等比数列的各项均为正数,且,则()A.3 B.6 C.9 D.816.对一切实数,不等式恒成立.则的取值范围是()A. B.C. D.7.已知,并且是第二象限的角,那么的值等于()A. B. C. D.8.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.9.设集合,,,则()A. B. C. D.10.已知实数,满足,,且,,成等比数列,则有()A.最大值 B.最大值 C.最小值 D.最小值二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,,,记数列的前项和为,则________.12.已知,则的值是______.13.直线与圆交于两点,若为等边三角形,则______.14.已知过两点,的直线的倾斜角是,则______.15.将边长为1的正方形中,把沿对角线AC折起到,使平面⊥平面ABC,则三棱锥的体积为________.16.已知等比数列中,,,则该等比数列的公比的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的内角所对的边分别为,且,.(1)若,求角的值;(2)若,求的值.18.已知函数.(1)求函数在上的最小值的表达式;(2)若函数在上有且只有一个零点,求的取值范围.19.在锐角三角形中,内角的对边分别为且.(1)求角的大小;(2)若,,求△的面积.20.若不等式的解集为.(1)求证:;(2)求不等式的解集.21.已知函数(1)求函数的单调递减区间;(2)若将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数的图象关于轴对称.求的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.2、B【解析】
由韦达定理列方程求出,即可得解.【详解】由已知及韦达定理可得,,,即,,所以.故选:.【点睛】本题考查一元二次方程和一元二次不等式的关系、韦达定理的应用等,属于一般基础题.3、B【解析】
利用,,依次求,观察归纳出通项公式,从而求出的值.【详解】∵数列满足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此归纳猜想,∴.故选B.【点睛】本题考查了一个教复杂的递推关系,本题的难点在于数列的项位于指数位置,不易化简和转化,一般的求通项方法无法解决,当遇见这种情况时一般我们就可以用“归纳”的方法处理,即通过求几项,然后观察规律进而得到结论.4、D【解析】由题意知点在圆C上,圆心坐标为,所以,故切线的斜率为,所以切线方程为,即.因为直线l与直线平行,所以,解得,所以直线的方程是-4x+3y-8=0,即4x-3y+8=0.所以直线与直线l间的距离为.选D.5、A【解析】
利用等比数列性质可求得,将所求式子利用对数运算法则和等比数列性质可化为,代入求得结果.【详解】且本题正确选项:【点睛】本题考查等比数列性质的应用,关键是灵活利用等比中项的性质,属于基础题.6、A【解析】
时,恒成立.时,原不等式等价于.由的最小值是2,可得,即.选A.7、A【解析】
根据同角三角函数关系,进行求解即可.【详解】因为,故又因为是第二象限的角,故故.故选:A.【点睛】本题考查同角三角函数关系的简单使用,属基础题.8、D【解析】
不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【点睛】本题主要考查利用不等式的性质判断不等关系,属于基础题.9、A【解析】因为,所以,又因为,,故选A.10、C【解析】试题分析:因为,,成等比数列,所以可得,有最小值,故选C.考点:1、等比数列的性质;2、对数的运算及基本不等式求最值.二、填空题:本大题共6小题,每小题5分,共30分。11、7500【解析】
讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.12、【解析】
根据两角差的正切公式即可求解【详解】故答案为:【点睛】本题考查两角差的正切公式的用法,属于基础题13、或【解析】
根据题意可得圆心到直线的距离为,根据点到直线的距离公式列方程解出即可.【详解】圆,即,圆的圆心为,半径为,∵直线与圆交于两点且为等边三角形,∴,故圆心到直线的距离为,即,解得或,故答案为或.【点睛】本题主要考查了直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.14、【解析】
由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【详解】解:由已知可得:,即,则.故答案为.【点睛】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.15、【解析】
由面面垂直的性质定理可得面,再结合三棱锥的体积的求法求解即可.【详解】解:取中点,连接,因为四边形为边长为1的正方形,则,即,又平面⊥平面ABC,由面面垂直的性质定理可得:面,且,则,故答案为:.【点睛】本题考查了三棱锥的体积的求法,重点考查了面面垂直的性质定理,属中档题.16、【解析】
根据等比通项公式即可求解【详解】故答案为:【点睛】本题考查等比数列公比的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)、.【解析】
(1)由先求的值,再求角即可;(2)先由求出,再根据求出即可.【详解】(1)由已知,又,所以,即,或;(2)因为,由可得,又因为,所以,即,总之、.【点睛】本题主要考查正弦定理、余弦定理及三角形面积公式的应用,属常规考题.18、(1);(2).【解析】
(1)求出函数的对称轴方程,对实数分、、三种情况讨论,分析函数在区间上的单调性,进而可得出函数在区间上的最小值的表达式;(2)对函数分情况讨论:(i)方程在区间上有两个相等的实根;(ii)①方程在区间只有一根;(②;③.可得出关于实数的等式或不等式,即可解得实数的取值范围.【详解】(1),其对称轴为,当,即时,函数在区间上单调递减,;当,即时,函数在区间上单调递减,在区间上单调递增,;当时,即当时,函数在区间上单调递增,.综上所述:;(2)(i)若方程在上有两个相等的实数根,则,此时无解;(ii)若方程有两个不相等的实数根.①当只有一根在内时,,即,得;②当时,,方程化为,其根为,,满足题意;③当时,,方程化为,其根为,,满足题意.综上所述,的取值范围是.【点睛】本题考查二次函数在定区间上最值的计算,同时也考查了利用二次函数在区间上零点个数求参数,考查分类讨论思想的应用,属于中等题.19、(1);(2).【解析】
(1)利用正弦定理及,便可求出,得到的大小;(2)利用(1)中所求的大小,结合余弦定理求出的值,最后再用三角形面积公式求出值.【详解】(1)由及正弦定理,得.因为为锐角,所以.(2)由余弦定理,得,又,所以,所以.考点:正余弦定理的综合应用及面积公式.20、(1)证明见解析(2)【解析】
(1)由已知可得是的两根,利用韦达定理,化简可得结论;(2)结合(1)原不等式可化为,利用一元二次不等式的解法可得结果.【详解】(1)∵不等式的解集为∴是的两根,且∴∴,所以;(2)因为,,所以,即,又即,解集为【点睛】本题考查了求一元二次不等式的解法,是基础题目.若,则的解集是;的解集是.21、(1),,.(2).【解析】
(1)根据诱导公式,二倍角公式,辅助角公式把化为的形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《酒店方案》课件
- 【培训课件】进阶企业核心的基本功 认识企业的财务报表
- 大学班委述职报告演讲结合
- 2025造价师兼职顾问聘任合同
- 2025专业版包工头劳务承包合同范本
- 2025连锁店销售合同范本
- 贵州省劳保费管理与员工福利
- 文化传播项目投标保证金政策
- 2024年隔离接地开关项目发展计划
- 农家院租赁合同:农产品展销
- 非遗蓝印花布产业发展研究
- 高频电灼仪产品技术要求深圳半岛医疗
- 年度委托代理记账服务 投标方案
- 卵圆孔未闭封堵术术前宣教
- 中建室外落地式卸料平台施工方案
- 《回收式自身输血》课件
- 英语演讲智慧树知到课后章节答案2023年下重庆大学
- 自主实习申请表
- 教科版小学科学一年级上册期末测试试卷有答案
- 政府数据信息保密协议范本
- 单位工程竣工验收证明书(标准格式)-扬州市
评论
0/150
提交评论