2025届贵州省剑河民族中学高一数学第二学期期末复习检测模拟试题含解析_第1页
2025届贵州省剑河民族中学高一数学第二学期期末复习检测模拟试题含解析_第2页
2025届贵州省剑河民族中学高一数学第二学期期末复习检测模拟试题含解析_第3页
2025届贵州省剑河民族中学高一数学第二学期期末复习检测模拟试题含解析_第4页
2025届贵州省剑河民族中学高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省剑河民族中学高一数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,则()A. B. C. D.2.在中,若,则的形状是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰三角形或直角三角形3.函数y=sin2x的图象可由函数A.向左平移π3B.向左平移π6C.向右平移π3D.向右平移π64.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.C.绕直角三角形的一边旋转所形成的几何体叫圆锥.D.用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.5.某赛季中,甲、乙两名篮球队员各场比赛的得分茎叶图如图所示,若甲得分的众数为15,乙得分的中位数为13,则()A.15 B.16 C.17 D.186.已知组数据,,…,的平均数为2,方差为5,则数据2+1,2+1,…,2+1的平均数与方差分别为()A.=4,=10 B.=5,=11C.=5,=20 D.=5,=217.在中,是的中点,,,相交于点,若,,则()A.1 B.2 C.3 D.48.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A. B. C. D.9.在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A. B.C. D.10.在三棱锥中,面,则三棱锥的外接球表面积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.12.数列满足,(且),则数列的通项公式为________.13.竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:“置如其周,令相乘也,又以高乘之,三十六成一”.该术相当于给出圆锥的底面周长与高,计算其体积的近似公式为.该结论实际上是将圆锥体积公式中的圆周率取近似值得到的.则根据你所学知识,该公式中取的近似值为______.14.已知等差数列的前项和为,且,,则;15.在一个不透明的布袋中,红色,黑色,白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是_________个.16.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点、、(),且.(1)求函数的解析式;(2)如果当时,两个函数与的图象有两个交点,求的取值范围.18.已知,其中,求:(1);;(2)与的夹角的余弦值.19.已知是同一平面内的三个向量,其中.(1)若,求;(2)若与共线,求的值.20.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?21.已知数列和满足:,,,,且是以q为公比的等比数列.(1)求证:;(2)若,试判断是否为等比数列,并说明理由.(3)求和:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

本题首先可根据计算出的值,然后根据正弦定理以及即可计算出的值,最后得出结果。【详解】因为,所以.由正弦定理可知,即,解得,故选A。【点睛】本题考查根据解三角形的相关公式计算的值,考查同角三角函数的相关公式,考查正弦定理的使用,是简单题。2、D【解析】

,两种情况对应求解.【详解】所以或故答案选D【点睛】本题考查了诱导公式,漏解是容易发生的错误.3、B【解析】

直接利用函数图象平移规律得解.【详解】函数y=sin2x-π可得函数y=sin整理得:y=故选:B【点睛】本题主要考查了函数图象平移规律,属于基础题。4、B【解析】

根据课本中的相关概念依次判断选项即可.【详解】对于A选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B,根据课本中棱柱的概念得到是正确的;对于C,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为B.【点睛】这个题目考查了几何体的基本概念,属于基础题.5、A【解析】

由图可得出,然后可算出答案【详解】因为甲得分的众数为15,所以由茎叶图可知乙得分数据有7个,乙得分的中位数为13,所以所以故选:A【点睛】本题考查的是茎叶图的知识,较简单6、C【解析】

根据题意,利用数据的平均数和方差的性质分析可得答案.【详解】根据题意,数据,,,的平均数为2,方差为5,则数据,,,的平均数,其方差;故选.【点睛】本题考查数据的平均数、方差的计算,关键是掌握数据的平均数、方差的计算公式,属于基础题.7、D【解析】由题意知,所以,解得,所以,故选D.8、B【解析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9、A【解析】

先根据正弦定理用角A,C表示,再根据三角形内角关系化基本三角函数形状,最后根据正弦函数性质得结果.【详解】因为,为的角平分线,所以,在中,,因为,所以,在中,,因为,所以,所以,则,因为,所以,所以,则,即的取值范围为.选A.【点睛】本题考查函数正弦定理、辅助角公式以及正弦函数性质,考查基本分析求解能力,属中档题.10、D【解析】

首先计算BD长为2,判断三角形BCD为直角三角形,将三棱锥还原为长方体,根据体对角线等于直径,计算得到答案.【详解】三棱锥中,面中:在中:即ABCD四点都在对应长方体上:体对角线为AD答案选D【点睛】本题考查了三棱锥的外接球表面积,将三棱锥放在对应的长方体里面是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、15【解析】

根据f(-1【详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【点睛】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.12、【解析】

利用累加法和裂项求和得到答案.【详解】当时满足故答案为【点睛】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.13、3【解析】

首先求出圆锥体的体积,然后与近似公式对比,即可求出公式中取的近似值.【详解】由题知圆锥体的体积,因为圆锥的底面周长为,所以圆锥的底面面积,所以圆锥体的体积,根据题意与近似公式对比发现,公式中取的近似值为.故答案为:.【点睛】本题考查了圆锥体的体积公式,属于基础题.14、1【解析】

若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.15、16【解析】

根据红色球和黑色球的频率稳定值,计算红色球和黑色球的个数,从而得到白色球的个数.【详解】根据概率是频率的稳定值的意义,红色球的个数为个;黑色球的个数为个;故白色球的个数为4个.故答案为:16.【点睛】本题考查概率和频率之间的关系:概率是频率的稳定值.16、【解析】

根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)根据向量坐标以及向量的数量积公式求出,利用辅助角公式即可求的解析式;(2),求出的范围,令,,则画函数图象,由两个函数与的图象有两个交点,建立不等关系即可求的值.【详解】解:(1),,,,,则,即;(2)因为,,令,,则画函数图象如下所示:,要使两个函数与的图象有两个交点,则,,解得解得.【点睛】本题主要考查三角函数的化简和求值,利用向量的数量积公式结合三角函数的辅助角公式将函数进行化简是解决本题的关键.18、(1)10;(2)【解析】试题分析:(1)本题考察的是平面向量的数量积和向量的模.先根据是相互垂直的单位向量表示出要用的两个向量,然后根据向量的数量积运算和向量模的运算即可求出答案.(2)本题考察的是平面向量的夹角余弦值,可以通过向量的数量积公式表示出夹角的余弦值.先求出向量的模长,然后根据(1)求出的的数量积代入公式,即可求出答案.试题解析:(1),.∴|.(2)考点:平面向量数量积的坐标表示、模和夹角.19、(1);(2)【解析】

(1)根据向量的坐标的运算法则和向量垂直的条件,以及模的定义即可求出.(2)根据向量共线的条件即可求出.【详解】(1)因为(2)由已知:【点睛】本题考查了向量的坐标运算以及向量的垂直和平行的坐标表示,属于基础题.20、定价为每桶7元,最大利润为440元.【解析】

若设定价在进价的基础上增加元,日销售利润为元,则,其中,整理函数,可得取何值时,有最大值,即获得最大利润【详解】设定价在进价的基础上增加元,日销售利润为元,则,由于,且,所以,;即,.所以,当时,取最大值.此时售价为,此时的最大利润为440元.【点睛】本题主要考查二次函数的应用,意在考查学生对该知识的理解掌握水平,属于基础题.21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论