山东省济南市市中区实验中学2025届高一数学第二学期期末检测试题含解析_第1页
山东省济南市市中区实验中学2025届高一数学第二学期期末检测试题含解析_第2页
山东省济南市市中区实验中学2025届高一数学第二学期期末检测试题含解析_第3页
山东省济南市市中区实验中学2025届高一数学第二学期期末检测试题含解析_第4页
山东省济南市市中区实验中学2025届高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市市中区实验中学2025届高一数学第二学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲箱子里装有个白球和个红球,乙箱子里装有个白球和个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为,摸出的红球的个数为,则()A.,且 B.,且C.,且 D.,且2.某四棱锥的三视图如图所示,则它的最长侧棱的长为()A. B. C. D.43.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.34.当点到直线的距离最大时,m的值为()A.3 B.0 C. D.15.过点(1,0)且与直线垂直的直线方程是()A. B. C. D.6.设a,b,c均为不等于1的正实数,则下列等式中恒成立的是A.B.C.D.7.已知圆锥的母线长为8,底面圆周长为,则它的体积是()A. B. C. D.8.如图所示,在正方体中,侧面对角线,上分别有一点E,F,且,则直线EF与平面ABCD所成的角的大小为()A.0° B.60° C.45° D.30°9.以下说法正确的是()A.零向量与单位向量的模相等B.模相等的向量是相等向量C.已知均为单位向量,若,则与的夹角为D.向量与向量是共线向量,则四点在一条直线上10.过点且与原点距离最大的直线方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点个数为__________.12.在四面体ABCD中,平面ABC,,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.13.已知一组数据,,,的方差为,则这组数据,,,的方差为______.14.已知,若对任意,均有,则的最小值为______;15.若a、b、c正数依次成等差数列,则的最小值为_______.16._________________;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知各项均为正数的等比数列满足:,且,.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前n项和.18.某种汽车,购车费用是10万元,每年使用的保险费和汽油费为万元,年维修费第一年为万元,以后逐年递增万元,问这种汽车使用多少年时,它的年平均费用最少?19.己知向量,,设函数,且的图象过点和点.(1)当时,求函数的最大值和最小值及相应的的值;(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,若在有两个不同的解,求实数的取值范围.20.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.21.数列中,且满足.(1)求数列的通项公式;(2)设,求;⑶设,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】可取,;,,,,,故选D.2、C【解析】

由三视图可知:底面,,底面是一个直角梯形,,,均为直角三角形,判断最长的棱,通过几何体求解即可.【详解】由三视图可知:该几何体如图所示,则底面,,底面是一个直角梯形,其中,,,,可得,,均为直角三角形,最长的棱是,.故选:C.【点睛】本题考查了三视图,线面垂直的判定与性质定理,考查了推理能力与计算能力,属于基础题.3、B【解析】

①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【点睛】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.4、C【解析】

求得直线所过的定点,当和直线垂直时,距离取得最大值,根据斜率乘积等于列方程,由此求得的值.【详解】直线可化为,故直线过定点,当和直线垂直时,距离取得最大值,故,故选C.【点睛】本小题主要考查含有参数的直线过定点的问题,考查点到直线距离的最值问题,属于基础题.5、D【解析】

设出直线方程,代入点求得直线方程.【详解】依题意设所求直线方程为,代入点得,故所求直线方程为,故选D.【点睛】本小题主要考查两条直线垂直的知识,考查直线方程的求法,属于基础题.6、B【解析】

根据对数运算的规律一一进行运算可得答案.【详解】解:由a,b,c≠1.考察对数2个公式:,,对选项A:,显然与第二个公式不符,所以为假.对选项B:,显然与第二个公式一致,所以为真.对选项C:,显然与第一个公式不符,所以为假.对选项D:,同样与第一个公式不符,所以为假.所以选B.【点睛】本题主要考查对数运算的性质,熟练掌握对数运算的各公式是解题的关键.7、D【解析】

圆锥的底面周长,求出底面半径,然后求出圆锥的高,即可求出圆锥的体积.【详解】∵圆锥的底面周长为

∴圆锥的底面半径

双∵圆锥的母线长∴圆锥的高为∴圆锥的体积为故选D.【点睛】本题是基础题,考查计算能力,圆锥的高的求法,熟练掌握公式是解题的关键.8、A【解析】

证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如过E作EG∥AB交BB1于点G,连接GF,根据三角形相似比可知:平面EFG∥平面ABCD.而EF在平面EFG中,故可以证得:EF∥平面ABCD.【详解】解:过E作EG∥AB交BB1于点G,连接GF,则,∵B1E=C1F,B1A=C1B,∴.∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.而EF在平面EFG中,∴EF∥平面ABCD.故答案为A【点睛】本题主要考查空间直线和平面平行的判定,根据面面平行的性质是解决本题的关键.9、C【解析】

根据零向量、单位向量、相等向量,向量的模、向量共线、向量数量积的运算的知识分析选项,由此确定正确选项.【详解】对于A选项,零向量的模是,单位向量的模是,两者不相等,故A选项说法错误.对于B选项,两个向量大小和方向都相等才是相等向量,故B选项说法错误.对于C选项,由,故C选项说法正确.对于D选项,向量与向量是共线向量,但是这两个向量没有公共点,所以无法判断是否在一条直线上.故D选项说法错误.故选:C【点睛】本小题主要考查向量的有关概念,考查向量数量积的运算,属于基础题.10、A【解析】

当直线与垂直时距离最大,进而可得直线的斜率,从而得到直线方程。【详解】原点坐标为,根据题意可知当直线与垂直时距离最大,由两点斜率公式可得:所以所求直线的斜率为:故所求直线的方程为:,化简可得:故答案选A【点睛】本题考查点到直线的距离公式,涉及直线的点斜式方程和一般方程,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

运用三角函数的诱导公式先将函数化简,再在同一直角坐标系中做出两支函数的图像,观察其交点的个数即得解.【详解】由三角函数的诱导公式得,所以令,求零点的个数转化求方程根的个数,因此在同一直角坐标系分别做出和的图象,观察两支图象的交点的个数为个,注意在做的图像时当时,,故得解.【点睛】本题考查三角函数的有界性和余弦函数与对数函数的交点情况,属于中档题.12、【解析】

易得四面体为长方体的一角,再根据长方体体对角线等于外接球直径,再利用对角线公式求解即可.【详解】因为四面体中,平面,且,.故四面体是以为一个顶点的长方体一角.设则因为四面体的外接球的表面积为,设其半径为,故.解得.故四面体的体积.故答案为:【点睛】本题主要考查了长方体一角的四面体的外接球有关问题,需要注意长方体体对角线等于外接球直径.属于中档题.13、【解析】

利用方差的性质直接求解.【详解】一组数据,,,的方差为5,这组数据,,,的方差为:.【点睛】本题考查方差的性质应用。若的方差为,则的方差为。14、【解析】

根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.15、1【解析】

由正数a、b、c依次成等差数列,则,则,再结合基本不等式求最值即可.【详解】解:由正数a、b、c依次成等差数列,则,则,当且仅当,即时取等号,故答案为:1.【点睛】本题考查了等差中项的运算,重点考查了基本不等式的应用,属基础题.16、1【解析】

利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(I)由得出,可得公比为2,再求出后可得;(II)由(I)得,则,可用错位相减法求.【详解】解:(Ⅰ)因为所以即.由因为所以,公比所以(Ⅱ)由(Ⅰ)知,,所以.所以因为所以所以【点睛】本题考查等比数列的通项公式,考查错位相减法求和.数列求和根据数列的通项公式可采取不同的方法,一般有公式法、分组求和法、裂项相消法、错位相减法、倒序相加法等.18、这种汽车使用年时,它的年平均费用最小【解析】

设这种汽车使用年时,它的年平均费用为万元,则,于是,当,即时,取得最小值,所以这种汽车使用10年时,它的年平均费用最小19、(1)最大值为2,此时;最小值为-1,此时.(2)【解析】

(1)根据向量数量积坐标公式,列出函数,再根据函数图像过定点,求解函数解析式,当时,解出的范围,根据三角函数性质,可求最值;(2)根据三角函数平移伸缩变换,写出解析式,画出在上的图象,根据图像即可求解参数取值范围.【详解】解:(1)由题意知.根据的图象过点和,得到,解得,.当时,,,最大值为2,此时,最小值为-1,此时.(2)将函数的图象向右平移一个单位得,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得令,,如图当时,在有两个不同的解∴,即.【点睛】本题考查(1)三角函数最值问题(2)三角函数的平移伸缩变换,考查计算能力,考查转化与化归思想,考查数形结合思想,属于中等题型.20、(1)5≤f(-2)≤10;(2)[-2,0).【解析】

(1)用和表示,再根据不等式的性质求得.(2)对进行参变分离,根据和求得.【详解】解(1)方法一⇒∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.方法二设f(-2)=mf(-1)+nf(1),即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比较两边系数:⇒∴f(-2)=3f(-1)+f(1),下同方法一.(2)当x∈[0,1]时,-1≤f(x)≤1,即-1≤ax2+x≤1,即当x∈[0,1]时,ax2+x+1≥0且ax2+x-1≤0恒成立;当x=0时,显然,ax2+x+1≥0且ax2+x-1≤0均成立;当x∈(0,1]时,若ax2+x+1≥0恒成立,则a≥--=-(+)2+,而-(+)2+在x∈(0,1]上的最大值为-2,∴a≥-2;当x∈(0,1]时,ax2+x-1≤0恒成立,则a≤-=(-)2-,而(-)2-在x∈(0,1]上的最小值为0,∴a≤0,∴-2≤a≤0,而a≠0,因此所求a的取值范围为[-2,0).【点睛】本题考查不等式的性质和参变分离的恒成立问题,属于难度题.21、(1);(2)(3)7.【解析】

(1)由可得为等差数列,从而可得数列的通项公式;(2)先判断时数列的各项为正数,时数列各项为负数,分两种情况讨论分别利用等差数列求和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论