江西省吉安市四校联考2025届数学高一下期末联考试题含解析_第1页
江西省吉安市四校联考2025届数学高一下期末联考试题含解析_第2页
江西省吉安市四校联考2025届数学高一下期末联考试题含解析_第3页
江西省吉安市四校联考2025届数学高一下期末联考试题含解析_第4页
江西省吉安市四校联考2025届数学高一下期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安市四校联考2025届数学高一下期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数x,y满足约束条件y≤1x≤2x+2y-2≥0,则A.1 B.2 C.3 D.42.已知,是两条不同的直线,,是两个不同的平面,若,,则下列命题正确的是A.若,,则B.若,且,则C.若,,则D.若,且,则3.设的内角,,所对的边分别为,,,且,,面积的最大值为()A.6 B.8 C.7 D.94.已知为三条不同直线,为三个不同平面,则下列判断正确的是()A.若,,,,则B.若,,则C.若,,,则D.若,,,则5.设向量,,则是的A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件6.设等比数列的前项和为,且,则()A. B. C. D.7.圆x-12+y-3A.1 B.2 C.2 D.38.已知,,,则()A. B. C.-7 D.79.已知,集合,则A. B. C. D.10.若,则下列不等式正确的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,,______.12.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.13.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.14.如图,在中,已知点在边上,,,则的长为____________.15.设等差数列的前项和为,若,,则的最小值为______.16.已知,且是第一象限角,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在边长为2菱形ABCD中,,且对角线AC与BD交点为O.沿BD将折起,使点A到达点的位置.(1)若,求证:平面ABCD;(2)若,求三棱锥体积.18.已知.(1)求函数的最小正周期及值域;(2)求方程的解.19.已知分别是锐角三个内角的对边,且,且.(Ⅰ)求的值;(Ⅱ)求面积的最大值;20.锐角的内角、、所对的边分别为、、,若.(1)求;(2)若,,求的周长.21.已知数列中,,,数列满足。(1)求证:数列为等差数列。(2)求数列的通项公式。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

作出可行域,作直线l:x+y=0,平移直线l可得最优解.【详解】作出可行域,如图ΔABC内部(含边界),作直线l:x+y=0,平移直线l,当直线l过点C(2,1)时,x+y=2+1=3为最大值.故选C.【点睛】本题考查简单的线性规划,解题关键是作出可行域.2、D【解析】

利用面面、线面位置关系的判定和性质,直接判定.【详解】解:对于A,若n∥α,m∥β,则α∥β或α与β相交,故错;对于B,若α∩β=l,且m⊥l,则m与β不一定垂直,故错;对于C,若m∥n,m∥β,则α与β位置关系不定,故错;对于D,∵α∩β=l,∴l⊂β,∵m∥l,则m∥β,故正确.故选D.【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间相互关系的合理运用.3、D【解析】

由已知利用基本不等式求得的最大值,根据三角形的面积公式,即可求解,得到答案.【详解】由题意,利用基本不等式可得,即,解得,当且仅当时等号成立,又因为,所以,当且仅当时等号成立,故三角形的面积的最大值为,故选D.【点睛】本题主要考查了基本不等式的应用,以及三角形的面积公式的应用,着重考查了转化思想,以及推理与运算能力,属于基础题.4、C【解析】

根据线线位置关系,线面位置关系,以及面面位置关系,逐项判断,即可得出结果.【详解】A选项,当时,由,可得,此时由,可得或或与相交;所以A错误;B选项,若,,则,或相交,或异面;所以B错误;C选项,若,,,根据线面平行的性质,可得,所以C正确;D选项,若,,则或,又,则,或相交,或异面;所以D错误;故选C【点睛】本题主要考查线面,面面有关命题的判定,熟记空间中点线面位置关系即可,属于常考题型.5、C【解析】

利用向量共线的性质求得,由充分条件与必要条件的定义可得结论.【详解】因为向量,,所以,即可以得到,不能推出,是“”的必要不充分条件,故选C.【点睛】本题主要考查向量共线的性质、充分条件与必要条件的定义,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.6、C【解析】

由,,联立方程组,求出等比数列的首项和公比,然后求.【详解】解:若,则,显然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故选:C.【点睛】本题主要考查等比数列的前项和公式的应用,要求熟练掌握,特别要注意对公比是否等于1要进行讨论,属于基础题.7、C【解析】

先计算圆心到y轴的距离,再利用勾股定理得到弦长.【详解】x-12+y-32=2圆心到y轴的距离d=1弦长l=2r故答案选C【点睛】本题考查了圆的弦长公式,意在考查学生的计算能力.8、C【解析】

把已知等式平方后可求得.【详解】∵,∴,即,,∵,∴,∴,,∴.故选C.【点睛】本题考查同角间的三角函数关系,考查两角和的正切公式,解题关键是把已知等式平方,并把1用代替,以求得.9、D【解析】

先求出集合A,由此能求出∁UA.【详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【点睛】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.10、C【解析】

根据不等式性质,结合特殊值即可比较大小.【详解】对于A,当,满足,但不满足,所以A错误;对于B,当时,不满足,所以B错误;对于C,由不等式性质“不等式两边同时加上或减去同一个数或式子,不等式符号不变”,所以由可得,因而C正确;对于D,当时,不满足,所以D错误.综上可知,C为正确选项,故选:C.【点睛】本题考查了不等式大小比较,不等式性质及特殊值的简单应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.12、1【解析】

根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题13、【解析】

如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.14、【解析】

由诱导公式可知,在中用余弦定理可得BD的长。【详解】由题得,,在中,可得,又,代入得,解得.故答案为:【点睛】本题考查余弦定理和诱导公式,是基础题。15、【解析】

用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【点睛】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.16、;【解析】

利用两角和的公式把题设展开后求得的值,进而利用的范围判断的范围,利用同角三角函数的基本关系求得的值,最后利用诱导公式和对原式进行化简,把的值和题设条件代入求解即可.【详解】,,即,,两边同时平方得到:,解得,是第一象限角,,得,,即为第一或第四象限,,.故答案为:.【点睛】本题考查了两角差的余弦公式、诱导公式以及同角三角函数的基本关系,需熟记三角函数中的公式,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)证明与即可.(2)法一:证明平面,再过点做垂足为,证明为三棱锥的高再求解即可.法二:通过进行转化求解即可.法三:通过进行转化求解即可.【详解】证明:(1)∵在菱形ABCD中,,,AC与BD交于点O.以BD为折痕,将折起,使点A到达点的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中点,则且,因为且,,所以平面,过点做垂足为,则平面BCD,又∴,解得,∴三棱锥体积.(法二):因为,,取AC中点E,,,,又(法三)因为且,,所以平面,,所以.【点睛】本题主要考查了线面垂直的证明与锥体体积的求解方法等.需要根据题意找到合适的底面与高,或者利用割补法求解体积.属于中档题.18、(1)最小正周期为,值域为;(2),或,【解析】

先用降幂公式,再用辅助角公式将化简成的形式,再求最小正周期,值域与的解.【详解】(1)故最小正周期为,又,故,所以值域为.故最小正周期为,值域为.(2)由(1),故得化简得,所以或,.即,或,.故方程的解为:,或,【点睛】本题主要考查三角函数公式,一般方法是先将三角函数化简为的形式,再根据题意求解相关内容.19、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)利用正弦定理将角化为边得,利用余弦定理可得;(Ⅱ)由及基本不等式可得,故而可得面积的最大值.试题解析:(Ⅰ)因为,由正弦定理有,既有,由余弦定理得,.(Ⅱ),即,当且仅当时等号成立,当时,,所以的最大值为.20、(1);(2).【解析】

(1)利用正弦定理边角互化思想,结合两角和的正弦公式可计算出的值,结合为锐角,可得出角的值;(2)利用三角形的面积公式可求出,利用余弦定理得出,由此可得出的周长.【详解】(1)依据题设条件的特点,由正弦定理,得,有,从而,解得,为锐角,因此,;(2),故,由余弦定理,即,,,故的周长为.【点睛】本题考查正弦定理边角互化思想的应用,同时也考查余弦定理和三角形面积公式解三角形,要熟悉正弦定理和余弦定理解三角形所适用的基本类型,同时在解题时充分利用边角互化思想,可以简化计算,考查运算求解能力,属于中等题.21、(1)见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论