上海市六校2025届数学高一下期末考试试题含解析_第1页
上海市六校2025届数学高一下期末考试试题含解析_第2页
上海市六校2025届数学高一下期末考试试题含解析_第3页
上海市六校2025届数学高一下期末考试试题含解析_第4页
上海市六校2025届数学高一下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市六校2025届数学高一下期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1202.已知数列的前项和为,若,则()A. B. C. D.3.在中,角所对的边分边为,已知,则此三角形的解的情况是()A.有一解 B.有两解 C.无解 D.有解但解的个数不确定4.如果在一次实验中,测得x,y的四组数值分别是A1,3,B2,3.8,C3,5.2,D4,6,则A.y=x+1.9 B.C.y=0.95x+1.04 D.5.在棱长为2的正方体中,是内(不含边界)的一个动点,若,则线段的长的取值范围为()A. B. C. D.6.若,,则()A. B. C. D.7.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π8.中国数学家刘微在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣.”意思是“圆内接正多边形的边数无限增加的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为()A. B. C. D.9.米勒问题,是指德国数学家米勒1471年向诺德尔教授提出的有趣问题:在地球表面的什么部位,一根垂直的悬杆呈现最长(即可见角最大?)米勒问题的数学模型如下:如图,设是锐角的一边上的两定点,点是边边上的一动点,则当且仅当的外接圆与边相切时,最大.若,点在轴上,则当最大时,点的坐标为()A. B.C. D.10.在中,角、、所对的边分别为、、,且,,,则的面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,,______.12._________________;13.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.14.函数的值域是__________.15.已知向量(1,2),(x,4),且∥,则_____.16.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若向量=(1,1),=(2,5),=(3,x).(1)若,求x的值;(2)若,求x的值.18.已知是定义域为R的奇函数,当时,.Ⅰ求函数的单调递增区间;Ⅱ,函数零点的个数为,求函数的解析式.19.将正弦曲线如何变换可以得到函数的图像,请写出变换过程,并画出一个周期的闭区间的函数简图.20.已知关于的不等式.(1)若不等式的解集为,求实数的值;(2)若不等式的解集为,求实数的取值范围.21.已知A,B,C是的内角,a,b,c分别是其对边长,向量,,且.(1)求角的大小;(2)若,,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)×10=0.8,∴对应的学生人数是600×0.8=480考点:频率分布直方图2、A【解析】

再递推一步,两个等式相减,得到一个等式,进行合理变形,可以得到一个等比数列,求出通项公式,最后求出数列的通项公式,最后求出,选出答案即可.【详解】因为,所以当时,,两式相减化简得:,而,所以数列是以为首项,为公比的等比数列,因此有,所以,故本题选A.【点睛】本题考查了已知数列递推公式求数列通项公式的问题,考查了等比数列的判断以及通项公式,正确的递推和等式的合理变形是解题的关键.3、C【解析】由三角形正弦定理可知无解,所以三角形无解,选C.4、B【解析】

求出样本数据的中心(2.5,4.5),依次代入选项中的回归方程.【详解】∵x∴样本数据的中心为(2.5,4.5),将它依次代四个选项,只有B符合,∴y与x之间的回归直线方程是y=1.04x+1.9【点睛】本题的考点是回归直线经过样本点的中心,而不是考查利用最小二乘法求回归直线方程.5、C【解析】

先判断是正四面体,可得正四面体的棱长为,则的最大值为的长,的最小值是到平面的距离,结合不在三角形的边上,计算可得结果.【详解】由正方体的性质可知,是正四面体,且正四面体的棱长为,在内,的最大值为,的最小值是到平面的距离,设在平面的射影为,则为正三角形的中心,,,的最小值为,又因为不在三角形的边上,所以的范围是,故选C.【点睛】本题主要考查正方体的性质及立体几何求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.6、D【解析】

由于,,,,利用“平方关系”可得,,变形即可得出.【详解】∵,,∴,∴.∵,∴,∵,∴.∴.故选D.【点睛】本题考查了两角和的余弦公式、三角函数同角基本关系式、拆分角等基础知识与基本技能方法,属于中档题.7、D【解析】试题分析:∵2a考点:正弦定理解三角形8、C【解析】

设出圆的半径,表示出圆的面积和圆内接正六边形的面积,即可由几何概型概率计算公式得解.【详解】设圆的半径为则圆的面积为圆内接正六边形的面积为由几何概型概率可知,在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为故选:C【点睛】本题考查了圆的面积及圆内接正六边形的面积求法,几何概型概率的计算公式,属于基础题.9、A【解析】

设点的坐标为,求出线段的中垂线与线段的中垂线交点的横坐标,即可得到的外接圆圆心的横坐标,由的外接圆与边相切于点,可知的外接圆圆心的横坐标与点的横坐标相等,即可得到点的坐标.【详解】由于点是边边上的一动点,且点在轴上,故设点的坐标为;由于,则直线的方程为:,点为直线与轴的交点,故点的坐标为;由于为锐角,点是边边上的一动点,故;所以线段的中垂线方程为:;线段的中垂线方程为:;故的外接圆的圆心为直线与直线的交点,联立,解得:;即的外接圆圆心的横坐标为的外接圆与边相切于点,边在轴上,则的外接圆圆心的横坐标与点的横坐标相等,即,解得:或(舍)所以点的坐标为;故答案选A【点睛】本题考查直线方程、三角形外接圆圆心的求解,属于中档题10、B【解析】

由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面积公式可求得的面积.【详解】,,又,,由余弦定理可得,可得,所以,的面积为.故选:B.【点睛】本题考查三角形面积的计算,同时也考查了余弦定理解三角形,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.12、1【解析】

利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.13、【解析】

由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【点睛】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.14、【解析】

根据反余弦函数的性质,可得函数在单调递减函数,代入即可求解.【详解】由题意,函数的性质,可得函数在单调递减函数,又由,所以函数在的值域为.故答案为:.【点睛】本题主要考查了反余弦函数的单调性的应用,其中解答中熟记反余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.15、.【解析】

根据求得,从而可得,再求得的坐标,利用向量模的公式,即可求解.【详解】由题意,向量,则,解得,所以,则,所以.【点睛】本题主要考查了向量平行关系的应用,以及向量的减法和向量的模的计算,其中解答中熟记向量的平行关系,以及向量的坐标运算是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】

先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)1.【解析】

(1)利用向量平行的代数形式得到x的值;(2)由数量积的坐标形式得到x的方程,解之即可.【详解】(1)∵∥,∴2x﹣15=0,解得x=.(2)8﹣=(6,3),∵(8﹣)•=30,∴18+3x=30,解得x=1.【点睛】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.18、Ⅰ见解析;(Ⅱ)【解析】

Ⅰ利用函数的奇偶性,利用对称性,写出函数的解析式;然后求解增区间.Ⅱ求出函数的表达式,利用数形结合求解函数的解析式.【详解】解:Ⅰ当时,,是奇函数,,,.当时,函数开口向上,增区间是:;当时,函数是二次函数,开口向下,增区间是:;函数的单调增区间为:,;Ⅱ当时,,最小值为;当时,,最大值为1.据此可作出函数的图象,根据图象得,若方程恰有3个不同的解,则a的取值范围是此时时,,或时,.所以.【点睛】本题主要考查函数奇偶性的应用,以及方程根的个数问题,利用数形结合是解决本题的关键.19、答案见解析【解析】

利用函数函数的图像变换规律和五点作图法可解.【详解】由函数的图像上的每一点保持纵坐标不变,横坐标扩大为原来的2倍,得到函数的图像,

再将函数的图像向左平移个单位,得到函数的图像.

然后再把函数的图像上每一个点的横坐标保持不变,纵坐标扩大为原来的2倍,得到函数的图像.作函数的图像列表得0100函数图像为【点睛】本题考查函数的图像变换的过程叙述和作出函数的一个周期的简图,属于基础题.20、(1)(2)【解析】

(1)不等式的解集为说明和1是的两个实数根,运用韦达定理,可以求出实数的值;(2)不等式的解集为,只需,或即可,解不等式组求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论