版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省苍溪中学2025届数学高一下期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是()A.中位数为83 B.众数为85 C.平均数为85 D.方差为192.设为实数,且,则下列不等式成立的是()A. B. C. D.3.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.4.过正方形的顶点,作平面,若,则平面和平面所成的锐二面角的大小是A. B.C. D.5.已知,其中,若函数在区间内有零点,则实数的取值可能是()A. B. C. D.6.在区间内任取一个实数,则此数大于2的概率为()A. B. C. D.7.Rt△ABC的三个顶点都在一个球面上,两直角边的长分别为6和8,且球心O到平面ABC的距离为12,则球的半径为()A.13 B.12 C.5 D.108.为了得到函数的图像,只需把函数的图像A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位9.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.10.在直三棱柱(侧棱垂直于底面)中,若,,,则其外接球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.12.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.13.已知,则___________.14.若各项均为正数的等比数列,,则它的前项和为______.15.对任意的θ∈0,π2,不等式116.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量,且(1)若是与共线的单位向量,求的坐标;(2)若,且,设向量与的夹角为,求.18.已知数列的前n项和为,,,.(1)求证:数列是等差数列;(2)令,数列的前n项和为,求证:.19.已知函数(1)求的最值、单调递减区间;(2)先把的图象向左平移个单位,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,求的值.20.已知数列满足,.(Ⅰ)求,的值,并证明:0<≤1;(Ⅱ)证明:;(Ⅲ)证明:.21.设函数.(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:A选项,中位数是84;B选项,众数是出现最多的数,故是83;C选项,平均数是85,正确;D选项,方差是,错误.考点:茎叶图的识别相关量的定义2、C【解析】
本题首先可根据判断出项错误,然后令可判断出项和项错误,即可得出结果。【详解】因为,所以,故错;当时,,故错;当时,,故错,故选C。【点睛】本题考查不等式的基本性质,主要考查通过不等式性质与比较法来比较实数的大小,可借助取特殊值的方法来进行判断,是简单题。3、D【解析】
由正弦定理及余弦定理可得,,然后求解即可.【详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【点睛】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.4、B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小为45°.5、D【解析】
求出函数,令,,根据不等式求解,即可得到可能的取值.【详解】由题:,其中,令,,若函数在区间内有零点,则有解,解得:当当当结合四个选项可以分析,实数的取值可能是.故选:D【点睛】此题考查根据函数零点求参数的取值范围,需要熟练掌握三角函数的图像性质,求出函数零点再讨论其所在区间列不等式求解.6、D【解析】
根据几何概型长度型直接求解即可.【详解】根据几何概型可知,所求概率为:本题正确选项:【点睛】本题考查几何概型概率问题的求解,属于基础题.7、A【解析】
利用勾股定理计算出球的半径.【详解】的斜边长为,所以外接圆的半径为,所以球的半径为.故选:A【点睛】本小题主要考查勾股定理计算,考查球的半径有关计算,属于基础题.8、B【解析】试题分析:记函数,则函数∵函数f(x)图象向右平移单位,可得函数的图象∴把函数的图象右平移单位,得到函数的图象,故选B.考点:函数y=Asin(ωx+φ)的图象变换.9、C【解析】
本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【点睛】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.10、A【解析】
根据题意,将直三棱柱扩充为长方体,其体对角线为其外接球的直径,可得半径,即可求出外接球的表面积.【详解】∵,,∠ABC=90∘,∴将直三棱柱扩充为长、宽、高为2、2、3的长方体,其体对角线为其外接球的直径,长度为,∴其外接球的半径为,表面积为=17π.故选:A.【点睛】本题考查几何体外接球,通常将几何体进行割补成长方体,几何体外接球等同于长方体外接球,利用长方体外接球直径等于体对角线长求出半径,再求出球的体积和表面积即可,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求出四棱锥的底面对角线的长度,结合勾股定理可求出四棱锥的高,然后由圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,可知四条侧棱的中点连线为正方形,其对角线为圆柱底面的直径,圆柱的高为四棱锥的高的一半,分别求解可求出圆柱的侧面积.【详解】由题可知,四棱锥是正四棱锥,四棱锥的四条侧棱的中点连线为正方形,边长为,该正方形对角线的长为1,则圆柱的底面半径为,四棱锥的底面是边长为的正方形,其对角线长为2,则四棱锥的高为,故圆柱的高为1,所以圆柱的侧面积为.【点睛】本题主要考查了空间几何体的结构特征,考查了学生的空间想象能力与计算求解能力,属于中档题.12、【解析】
根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.13、;【解析】
把已知式平方可求得,从而得,再由平方关系可求得.【详解】∵,∴,即,∴,即,∴.故答案为.【点睛】本题考查同角三角函数关系,考查正弦的二倍角公式,在用平方关系求值时要注意结果可能有正负,因此要判断是否只取一个值.14、【解析】
利用等比数列的通项公式求出公比,由此能求出它的前项和.【详解】设各项均为正数的等比数列的公比为,由,得,且,解得,它的前项和为.故答案:.【点睛】本题考查等比数列的前项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.15、-4,5【解析】1sin2θ+4cos2点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16、15【解析】
根据f(-1【详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【点睛】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或【解析】分析:(1)由与共线,可设,又由为单位向量,根据,列出方程即可求得向量的坐标;(2)根据向量的夹角公式,即可求解向量与的夹角.详解:与共线,又,则,为单位向量,,或,则的坐标为或,,.点睛:对于平面向量的运算问题,通常用到:1、平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;2、由向量的数量积的性质有,,,因此利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题;3、本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立的方程.18、(1)证明见解析;(2)证明见解析.【解析】
(1)根据和的关系式,利用,整理化简得到,从而证明是等差数列;(2)利用由(1)写出的通项,利用裂项相消法求出,从而证明【详解】(1)因为,所以当时,两式相减,得到,整理得,又因为,所以,所以数列是等差数列,公差为3;(2)当时,,解得或,因为,所以,由(1)可知,即公差,所以,所以,所以【点睛】本题考查根据与的关系证明等差数列,裂项相消法求数列的和,属于中档题.19、(1),,单调递减区间为;(2).【解析】
(1)函数,得最大值为,并解不等式,得到函数的单调递减区间;(2)由平移变换、伸缩变换得到函数,再把代入求值.【详解】(1)因为,所以当时,,当时,.由,所以函数的单调递减区间为.(2)的图象向左平移个单位得:,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:,当时,.【点睛】本题考查三角函数中的辅助角公式、三角函数的性质、图象变换等知识,对三角函数图象与性质进行综合考查.20、(Ⅰ)见证明;(Ⅱ)见证明;(Ⅲ)见证明【解析】
(I)直接代入计算得,利用得从而可证结论;(II)证明,即可;(III)由(II)可得,即,,应用累加法可得,从而证得结论.【详解】解:(Ⅰ)由已知得,.因为所以.所以又因为所以与同号.又因为>0所以.(Ⅱ)因为又因为,所以.同理又因为,所以综上,(Ⅲ)证明:由(Ⅱ)可得所以,即所以,,...,累加可得所以由(Ⅱ)可得所以,即所以,,...,累加可得所以即综上所述.【点睛】本题考查数列递推公式,考查数列中的不等式证明.第(I)问题关键是证明数列是递减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳制品企业销售经理合同范本
- 临时品牌专员招聘合同模板
- 科技园区建设土方开挖施工合同
- 银行员工客户信息保密承诺书
- 通信基站维护员合同范例
- 写字楼水电维修工程师聘用协议
- 塑料厂给排水暖施工合同
- 互联网公司文秘招聘协议
- 船舶管道保温施工协议
- 广告宣传皮卡租赁合同
- 素描试卷家长会
- JGJ-T490-2021钢框架内填墙板结构技术标准
- 2024年移动解决方案经理认证考试题库大全-中(多选题)
- 无线测温设备施工方案
- 2024年大学生网络安全知识竞赛题库及答案(共70题)
- 2024秋期国家开放大学专科《管理学基础》一平台在线形考(形考任务一至四)试题及答案
- 森林康养 课件
- 畜牧师招聘笔试题及解答(某大型央企)2024年
- 酒店保洁服务投标方案(技术方案)
- 我是小交警(教学设计)-2024-2025 学年六年级上册综合实践活动蒙沪版
- 艺术中国智慧树知到答案2024年上海戏剧学院
评论
0/150
提交评论