版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省枣阳市白水高级中学2025届数学高一下期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,则异面直线BD与CE所成的角为()A. B. C. D.2.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)
4
2
3
5
销售额(万元)
49
26
39
54
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元3.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为A. B. C. D.4.如图所示的程序框图,若执行的运算是,则在空白的执行框中,应该填入A.B.C.D.5.某几何体的直观图如图所示,是的直径,垂直所在的平面,且,为上从出发绕圆心逆时针方向运动的一动点.若设弧的长为,的长度为关于的函数,则的图像大致为()A. B.C. D.6.下列关于函数()的叙述,正确的是()A.在上单调递增,在上单调递减B.值域为C.图像关于点中心对称D.不等式的解集为7.已知函数,则函数的最小正周期为()A. B. C. D.8.设为锐角三角形,则直线与两坐标轴围成的三角形的面积的最小值是()A.10 B.8 C.4 D.29.若向量与向量不相等,则与一定()A.不共线 B.长度不相等 C.不都是单位向量 D.不都是零向量10.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则的取值围为_________.12.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;13.记,则函数的最小值为__________.14.在等差数列中,若,则__________.15.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.16.和的等差中项为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.18.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?19.设矩形的周长为,把沿向折叠,折过去后交于,设,的面积为.(1)求的解析式及定义域;(2)求的最大值.20.已知,.求和的值.21.化简:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出异面直线BD与CE所成的角.【详解】∵平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设AB=1,则B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),设异面直线BD与CE所成的角为θ,则cosθ,∴θ.∴异面直线BD与CE所成的角为.故选:C.【点评】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.2、B【解析】
试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为1.4,∴42=1.4×2.5+a,∴=1.1,∴线性回归方程是y=1.4x+1.1,∴广告费用为6万元时销售额为1.4×6+1.1=3.5考点:线性回归方程3、C【解析】试题分析:设AC=x,则BC=12-x(0<x<12)矩形的面积S=x(12-x)>20∴x2-12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率考点:几何概型4、D【解析】试题分析:解:运行第一次:,不成立;运行第二次:,不成立;运行第三次:,不成立;运行第四次:,不成立;运行第四次:,成立;输出所以应选D.考点:循环结构.5、A【解析】如图所示,设,则弧长,线段,作于当在半圆弧上运动时,,,即,由余弦函数的性质知当时,即运动到点时有最小值,只有选项适合,又由对称性知选,故选A.6、D【解析】
运用正弦函数的一个周期的图象,结合单调性、值域和对称中心,以及不等式的解集,可得所求结论.【详解】函数(),在,单调递增,在上单调递减;值域为;图象关于点对称;由可得,解得:.故选:D.【点睛】本题考查三角函数的图象和性质,考查逻辑思维能力和运算能力,属于常考题.7、D【解析】
根据二倍角公式先化简,再根据即可。【详解】由题意得,所以周期为.所以选择D【点睛】本题主要考查了二倍角公式;常考的二倍角公式有正弦、余弦、正切。属于基础题。8、B【解析】
令,得直线在x、y轴上的截距,求得三角形面积并利用二倍角公式化简,根据三角函数图象和性质求得面积最小值即可.【详解】令得直线在y轴上的截距为,令得直线在x轴上的截距为,其围成的三角形面积:,求S的最小值转化为求函数的最小值,因为为锐角,所以,当时取最小值−1,则,故围成三角形面积最小值为8.故选:B.【点睛】本题考查直线方程与三角函数二倍角公式的应用,综合题性较强,属于中等题.9、D【解析】
由方向相同且模相等的向量为相等向量,再逐一判断即可得解.【详解】解:向量与向量不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A、B、C错误,D正确.故选:D.【点睛】本题考查了相等向量的定义,属基础题.10、C【解析】
由题,连接,设其交平面于点易知平面,即(或其补角)为与平面所成的角,再利用等体积法求得AO的长度,即可求得的长度,可得结果.【详解】设正方体的边长为1,如图,连接,设其交平面于点,则易知,,又,所以平面,即得平面.在三棱锥中,由等体积法知,,即,解得,所以.连接,则(或其补角)为与平面所成的角.在中,.故选C.【点睛】本题考查了立体几何中线面角的求法,作出线面角是解题的关键,求高的长度会用到等体积法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由函数,根据,得到,再由,得到,结合余弦函数的性质,即可求解.【详解】由题意,函数,又由,即,即,因为,则,所以或,即或,所以实数的取值围为.故答案为:.【点睛】本题主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟练应用余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.13、4【解析】
利用求解.【详解】,当时,等号成立.故答案为:4【点睛】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.14、【解析】
利用等差数列广义通项公式,将转化为,从而求出的值,再由广义通项公式求得.【详解】在等差数列中,由,,得,即..故答案为:1.【点睛】本题考查等差数列广义通项公式的运用,考查基本量法求解数列问题,属于基础题.15、1.98.【解析】
本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16、【解析】
设和的等差中项为,利用等差中项公式可得出的值.【详解】设和的等差中项为,由等差中项公式可得,故答案为:.【点睛】本题考查等差中项的求解,解题时要充分利用等差中项公式来求解,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由,转化为,利用弦化切的思想得出的值,从而求出的值;(2)由,转化为,然后利用平面向量数量积的坐标运算律和辅助角公式与函数的解析式进行化简,并求出在区间的最大值,即可得出实数的取值范围.【详解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,当时,,取得最大值:,又恒成立,即,故.【点睛】本题考查平面向量数量积的坐标运算,考查三角函数的最值,在求解含参函数的不等式恒成立问题,可以利用参变量分离法,转化为函数的最值来求解,考查转化与化归数学思想,考查计算能力,属于中等题.18、(4)服用A药睡眠时间平均增加4.4;服用B药睡眠时间平均增加4.6;从计算结果来看,服用A药的效果更好;(4)A药
B药
6
4.
89565
45845
4.
794446844
7844567944
4.
46457
4544
4.
4
从茎叶图来看,A的数据大部分集中在第二、三段,B的数据大部分集中在第一、二段,故A药的药效好.【解析】(4)设A药观测数据的平均数为,B药观测数据的平均数为.由观测结果可得:=×(4.6+4.4+4.4+4.5+4.5+4.8+4.4+4.4+4.4+4.4+4.5+4.6+4.7+4.7+4.8+4.9+4.4+4.4+4.4+4.5)=4.4,=×(4.5+4.5+4.6+4.8+4.9+4.4+4.4+4.4+4.4+4.4+4.6+4.7+4.8+4.9+4.4+4.4+4.5+4.6+4.7+4.4)=4.6.由以上计算结果可得>,因此可看出A药的疗效更好.(4)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎4,4上,而B药疗效的试验结果有的叶集中在茎4,4上,由此可看出A药的疗效更好.考点:茎叶图、平均数.19、(1)(2)的最大值为.【解析】
(1)利用周长,可以求出的长,利用平面几何的知识可得,再利用勾股定理,可以求出的值,由矩形的周长为,可求出的取值范围,最后利用三角形面积公式求出的解析式;(2)化简(1)的解析式,利用基本不等式,可以求出的最大值.【详解】(1)如下图所示:∵设,则,又,即,∴,得,∵,∴,∴的面积.(2)由(1)可得,,当且仅当,即时取等号,∴的最大值为,此时.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托劳务服务合同范例
- 劳务泥工合同范例
- 吊车装卸搬运合同范例
- 力瓦合同模板
- 《肠内营养开始时间对超低出生体重儿生长发育指标及消化功能的影响》
- 《OECD视域下的新征税权制度研究》
- 《C街道办事处固定资产内部控制案例研究》
- 《大华会计师事务所对JD股份审计失败案例研究》
- 自然灾害救助申请表
- 《东北沦陷区散文创作研究(1931-1945)》
- 《婴幼儿行为观察、记录与评价》习题库 (项目三) 0 ~ 3 岁婴幼儿语言发展观察、记录与评价
- 英语漫谈胶东海洋文化知到章节答案智慧树2023年威海海洋职业学院
- 环保产品管理规范
- 幼儿园:我中奖了(实验版)
- 赵学慧-老年社会工作理论与实务-教案
- 《世界主要海峡》
- 住院医师规范化培训师资培训
- 中央企业商业秘密安全保护技术指引2015版
- 螺旋果蔬榨汁机的设计
- 《脊柱整脊方法》
- 会计与财务管理专业英语智慧树知到答案章节测试2023年哈尔滨商业大学
评论
0/150
提交评论