




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省凌源三中高一下数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.经过点,和直线相切,且圆心在直线上的圆方程为()A. B.C. D.2.已知函数f(x),则f[f(2)]=()A.1 B.2 C.3 D.43.等差数列中,若,则=()A.11 B.7 C.3 D.24.如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,则()A.B.C.D.5.在中,角,,所对的边分别为,,,若,,,则的值为()A. B. C. D.6.若,且,恒成立,则实数的取值范围是()A. B.C. D.7.在中,角,,所对的边分别为,,,则下列命题中正确命题的个数为()①若,则;②若,则为钝角三角形;③若,则.A.1 B.2 C.3 D.08.已知向量,满足,和的夹角为,则()A. B. C. D.19.在中,角的对边分别是,若,则()A. B.或 C.或 D.10.若,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.的值域是______.12.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为___.13.在等比数列中,,公比,若,则的值为.14.直线的倾斜角的大小是_________.15.若向量与的夹角为,与的夹角为,则______.16.若数列满足(),且,,__.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.18.中,角所对的边分别为,已知.(1)求角的大小;(2)若,求面积的最大值.19.已知数列中,,.(1)令,求证:数列为等比数列;(2)求数列的通项公式;(3)令,为数列的前项和,求.20.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(1)求数列,的通项公式;(2)当时,记,求数列的前项和.21.已知角、的顶点在平面直角坐标系的原点,始边与轴正半轴重合,且角的终边与单位圆(圆心在原点,半径为1的圆)的交点位于第二象限,角的终边和单位圆的交点位于第三象限,若点的横坐标为,点的纵坐标为.(1)求、的值;(2)若,求的值.(结果用反三角函数值表示)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
设出圆心坐标,由圆心到切线的距离和它到点的距离都是半径可求解.【详解】由题意设圆心为,则,解得,即圆心为,半径为.圆方程为.故选:B.【点睛】本题考查求圆的标准方程,考查直线与圆的位置关系.求出圆心坐标与半径是求圆标准方程的基本方法.2、B【解析】
根据分段函数的表达式求解即可.【详解】由题.故选:B【点睛】本题主要考查了分段函数的求值,属于基础题型.3、A【解析】
根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.4、B【解析】
从图形中可以看出样本A的数据均不大于10,而样本B的数据均不小于10,A中数据波动程度较大,B中数据较稳定,由此得到结论.【详解】∵样本A的数据均不大于10,而样本B的数据均不小于10,,由图可知A中数据波动程度较大,B中数据较稳定,.故选B.5、B【解析】
先利用面积公式得到,再利用余弦定理得到【详解】余弦定理:故选B【点睛】本题考查了面积公式和余弦定理,意在考查学生的计算能力.6、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.7、C【解析】
根据正弦定理和大角对大边判断①正确;利用余弦定理得到为钝角②正确;化简利用余弦定理得到③正确.【详解】①若,则;根据,则即,即,正确②若,则为钝角三角形;,为钝角,正确③若,则即,正确故选C【点睛】本题考查了正弦定理和余弦定理,意在考查学生对于正弦定理和余弦定理的灵活运用.8、B【解析】
由平面向量的数量积公式,即可得到本题答案.【详解】由题意可得.故选:B.【点睛】本题主要考查平面向量的数量积公式,属基础题.9、D【解析】
直接利用正弦定理,即可得到本题答案,记得要检验,大边对大角.【详解】因为,所以,又,所以,.故选:D【点睛】本题主要考查利用正弦定理求角.10、D【解析】
根据不等式的基本性质逐一判断可得答案.【详解】解:A.当时,不成立,故A不正确;B.取,,则结论不成立,故B不正确;C.当时,结论不成立,故C不正确;D.若,则,故D正确.故选:D.【点睛】本题主要考查不等式的基本性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.12、【解析】
两圆方程相减求出公共弦所在直线的解析式,求出第一个圆心到直线的距离,再由第一个圆的半径,利用勾股定理及垂径定理即可求出公共弦长.【详解】圆与圆的方程相减得:,由圆的圆心,半径r为2,且圆心到直线的距离,则公共弦长为.故答案为.【点睛】此题考查了直线与圆相交的性质,求出公共弦所在的直线方程是解本题的关键.13、1【解析】
因为,,故答案为1.考点:等比数列的通项公式.14、【解析】试题分析:由题意,即,∴.考点:直线的倾斜角.15、【解析】
根据向量平行四边形法则作出图形,然后在三角形中利用正弦定理分析.【详解】如图所示,,,所以在中有:,则,故.【点睛】本题考查向量的平行四边形法则的运用,难度一般.在运用平行四边形法则时候,可以适当将其拆分为三角形,利用解三角形中的一些方法去解决问题.16、1【解析】
由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据条件列方程解得公差,再根据等差数列通项公式得结果,(Ⅱ)先根据和项求通项,再根据错位相减法求和.【详解】(Ⅰ)因为构成等比数列,所以(0舍去)所以(Ⅱ)当时,当时,,相减得所以即【点睛】本题考查等差数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.18、(1);(2).【解析】
(1)由正弦定理化边为角,再由同角间的三角函数关系化简可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面积最大值.【详解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,当且仅当时等号成立.∴,,最大值为.【点睛】本题考查正弦定理和余弦定理,考查同角间的三角函数关系,考查基本不等式求最值.本题主要是考查的公式较多,掌握所有公式才能正确解题.本题属于中档题.19、(1)见解析(2)(3)【解析】
(1)计算,得证数列为等比数列.(2)先求出的通项公式,再计算数列的通项公式.(3)计算,根据错位相减法和分组求和法得到答案.【详解】(1),,,故数列是以为首项,以为公比的等比数列.(2)由(1)知,由,得数列的通项公式为.(3)由(2)知,记.有.两式作差得,得,则.【点睛】本题考查了数列的证明,数列通项公式,分组求和,错位相减法,意在考查学生的计算能力.20、(1)见解析(2)【解析】
(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知cn,写出Tn、Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.【详解】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n﹣1,bn=2n﹣1;当时,an(2n+79),bn=9•;(2)当d>1时,由(1)知an=2n﹣1,bn=2n﹣1,∴cn,∴Tn=1+3•5•7•9•(2n﹣1)•,∴Tn=1•3•5•7•(2n﹣3)•(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年南通驾校考试客货运从业资格证考试题库
- 机械工程材料力学专业试题
- 河北省沧州市青县2023-2024学年三年级下学期5月期中科学试题(含答案)
- 出口螺杆验货合同范例
- 农场劳动合同样本
- 中粮配额合同样本
- 农村建房安全合同标准文本
- 2025年公共营养师考试复习的个性化调整方案试题及答案
- 2024年花艺师考试学习规划建议试题及答案
- 人教版九年级化学第四单元课题4化学式与化合价(第一课时教学设计)新人教版
- 工程场地地震安全性评价
- 新世纪福音战士课件
- 天然气集输-第三章天然气集输系统课件
- 职业生涯规划课件
- 2023年成都市国有资产投资经营公司招聘笔试题库及答案解析
- 中国帕金森病治疗指南
- 软件设计说明书概要+详细
- 国际市场营销(第三版)-教学课件
- 弱电机房验收标准
- 脚手架或模板支架立杆底地基承载力计算
- 超导材料应用举例PPT课件
评论
0/150
提交评论