




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省石家庄二中雄安校区安新中学高一数学第二学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线过点,则此直线的倾斜角是()A. B. C. D.90。2.同时具有性质:“①最小正周期是;②图象关于直线对称;③在上是单调递增函数”的一个函数可以是()A. B.C. D.3.函数的图像大致为()A. B. C. D.4.下列极限为1的是()A.(个9) B.C. D.5.已知等比数列的前项和为,则下列一定成立的是()A.若,则 B.若,则C.若,则 D.若,则6.已知a,b为不同的直线,为平面,则下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.8.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,9.执行如图所示的程序框图,则输出的值为()A.7 B.6 C.5 D.410.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是________.12.已知过两点,的直线的倾斜角是,则______.13.若关于的不等式有解,则实数的取值范围为________.14.在数列中,若,则____.15.在中,角、、所对的边为、、,若,,,则角________.16.某球的体积与表面积的数值相等,则球的半径是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.18.请解决下列问题:(1)已知,求的值;(2)计算.19.某公司为了提高工效,需分析该公司的产量台与所用时间小时之间的关系,为此做了四次统计,所得数据如下:产品台数台2345所用时间小时34求出y关于x的线性回归方程;预测生产10台产品需要多少小时?20.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:;(2)若,,,试画出二面角的平面角,并求它的余弦值.21.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,试用θ表示ΔABC
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据两点间斜率公式,可求得斜率.再由斜率与倾斜角关系即可求得直线的倾斜角.【详解】直线过点则直线的斜率设倾斜角为,根据斜率与倾斜角关系可得由直线倾斜角可得故选:A【点睛】本题考查了直线斜率的求法,斜率与倾斜角关系,属于基础题.2、D【解析】
利用正弦函数、余弦函数的图象和性质,逐一检验,可得结论.【详解】A,对于y=cos(),它的周期为4π,故不满足条件.B,对于y=sin(2x),在区间上,2x∈[,],故该函数在区间上不是单调递增函数,故不满足条件.C,对于y=cos(2x),当x时,函数y,不是最值,故不满足②它的图象关于直线x对称,故不满足条件.D,对于y=sin(2x),它的周期为π,当x时,函数y=1,是函数的最大值,满足它的图象关于直线x对称;且在区间上,2x∈[,],故该函数在区间上是单调递增函数,满足条件.故选:D.【点睛】本题主要考查了正弦函数、余弦函数的图象和性质,属于中档题.3、A【解析】
先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选:【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.4、A【解析】
利用极限的运算逐项求解判断即可【详解】对于A项,极限为1,对于B项,极限不存在,对于C项,极限为1.对于D项,,故选:A.【点睛】本题考查的极限的运算及性质,准确计算是关键,是基础题5、C【解析】
设等比数列的公比为q,利用通项公式与求和公式即可判断出结论.【详解】设等比数列的公比为q,若,则,则,而与0的大小关系不确定.若,则,则与同号,则与0的大小关系不确定.故选:C【点睛】本题主要考查了等比数列的通项公式与求和公式及其性质、不等式的性质与解法,考查了推理能力与计算能力,属于中档题.6、D【解析】
根据线面垂直与平行的性质与判定分析或举出反例即可.【详解】对A,根据线线平行与线面垂直的性质可知A正确.对B,根据线线平行与线面垂直的性质可知B正确.对C,根据线面垂直的性质知C正确.对D,当,时,也有可能.故D错误.故选:D【点睛】本题主要考查了空间中平行垂直的判定与性质,属于中档题.7、A【解析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.8、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.9、C【解析】
由流程图循环4次,输出,即可得出结果..【详解】初始值,,是,第一次循环:,,是,第二次循环:,,是,第三次循环:,,是,第四次循环:S,,否,输出.故选C.【点睛】本题考查程序框图的循环,分析框图的作用,逐步执行即可,属于基础题.10、D【解析】
利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.12、【解析】
由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【详解】解:由已知可得:,即,则.故答案为.【点睛】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.13、【解析】
利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.14、【解析】
根据递推关系式,依次求得的值.【详解】由于,所以,.故答案为:【点睛】本小题主要考查根据递推关系式求数列某一项的值,属于基础题.15、.【解析】
利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.16、3【解析】试题分析:,解得.考点:球的体积和表面积三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可知即为与平面的夹角,求解即可.【详解】(1)证明:连接,交于,则为中点,连接OP,∵P为的中点,∴,∵OP⊂平面,⊄平面,∴平面;(2)证明:长方体中,,底面是正方形,则AC⊥BD,又⊥面,则.∵⊂平面,⊂平面,,∴平面.∵平面,∴平面平面;(3)解:连接,由(2)知,平面平面,∴即为与平面的夹角,在长方体中,∵,∴.在中,.∴直线与平面的夹角为.【点睛】本题考查了线面平行、面面垂直的证明,考查了线面角的求法,考查了学生的空间想象能力和计算求解能力,属于中档题.18、(1)(2)3【解析】
(1)分子分母同时除以即可得解;(2)由对数的运算求解即可.【详解】解:(1)由,分子分母同时除以可得,原式.(2)原式.【点睛】本题考查了三角求值中的齐次式求值问题,重点考查了对数的运算,属基础题.19、(1)(2)小时【解析】
求出出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和的值,写出线性回归方程.将代入回归直线方程,可得结论.【详解】解:由题意,,,于是回归方程;由题意,时,答:根据回归方程,加工能力10个零件,大约需要小时.【点睛】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.20、(1)见证明;(2)二面角图见解析;【解析】
(1)由菱形的性质得出,由平面,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;(2)过点在平面内作,垂足为点,连接,可证出平面,于是找出二面角的平面角为,并计算出的三边边长,利用锐角三角函数计算出,即为所求答案.【详解】(1)连接,因为侧面为菱形,所以,且与相交于点.因为平面,平面,所以.又,所以平面因为平面,所以.(2)作,垂足为,连结,因为,,,所以平面,又平面,所以.所以是二面角的平面角.因为,所以为等边三角形,又,所以,所以.因为,所以.所以.在中,.【点睛】本题考查直线与直线垂直的证明,二面角的求解,在这些问题的处理中,主要找出一些垂直关系,二面角的求解一般有以下几种方法:①定义法;②三垂线法;③垂面法;④射影面积法;⑤空间向量法.在求解时,可以灵活利用这些方法去处理.21、(1)c=7或c=2.(1)=2sinθ+2【解析】试题分析:(Ⅰ)由题意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等变形得c1-9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年南通驾校考试客货运从业资格证考试题库
- 机械工程材料力学专业试题
- 河北省沧州市青县2023-2024学年三年级下学期5月期中科学试题(含答案)
- 出口螺杆验货合同范例
- 农场劳动合同样本
- 中粮配额合同样本
- 农村建房安全合同标准文本
- 2025年公共营养师考试复习的个性化调整方案试题及答案
- 2024年花艺师考试学习规划建议试题及答案
- 人教版九年级化学第四单元课题4化学式与化合价(第一课时教学设计)新人教版
- 《中华人民共和国招标投标法》知识培训
- 【大数据百家讲坛】2025年DeepSeek、Manus与AI+Agent行业现状报告
- 广州2025年广东广州海珠区新港街道第一批雇员招聘5人笔试历年参考题库附带答案详解
- 儿童口腔保健知识宣教
- 儿童发展问题的咨询与辅导-案例1-5-国开-参考资料
- 安全生产法律法规汇编(2025版)
- 软件设计说明书概要+详细
- 国际市场营销(第三版)-教学课件
- 弱电机房验收标准
- 脚手架或模板支架立杆底地基承载力计算
- 超导材料应用举例PPT课件
评论
0/150
提交评论