山东省日照市莒县、岚山2024届高一下数学期末联考试题含解析_第1页
山东省日照市莒县、岚山2024届高一下数学期末联考试题含解析_第2页
山东省日照市莒县、岚山2024届高一下数学期末联考试题含解析_第3页
山东省日照市莒县、岚山2024届高一下数学期末联考试题含解析_第4页
山东省日照市莒县、岚山2024届高一下数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照市莒县、岚山2024届高一下数学期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是26;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月2日到10月6日认购量的分散程度比成交量的分散程度更大.则上述判断错误的个数为()A.4 B.3 C.2 D.12.在中,,,则的最小值是()A.2 B.4 C. D.123.已知函数在上是减函数,则实数的取值范围是()A. B. C. D.4.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=A. B. C.1 D.25.在中,根据下列条件解三角形,其中有一解的是()A.,,B.,,C.,,D.,,6.在区间上随机选取一个数,则满足的概率为()A. B. C. D.7.若是的重心,,,分别是角的对边,若,则角()A. B. C. D.8.若直线经过A(1,0),B(2,3)两点,则直线A.135° B.120° C.60° D.45°9.某同学用收集到的6组数据对(xi,yi)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l的方程:x,相关指数为r.现给出以下3个结论:①r>0;②直线l恰好过点D;③1;其中正确的结论是A.①② B.①③C.②③ D.①②③10.圆的圆心坐标和半径分别为()A.,2 B.,2 C.,4 D.,4二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,则的值等于.12.某公司租地建仓库,每月土地占用费(万元)与仓库到车站的距离(公里)成反比.而每月库存货物的运费(万元)与仓库到车站的距离(公里)成正比.如果在距车站公里处建仓库,这两项费用和分别为万元和万元,由于地理位置原因.仓库距离车站不超过公里.那么要使这两项费用之和最小,最少的费用为_____万元.13.设为等差数列的前n项和,,则________.14.若数列满足,且,则___________.15.已知数列满足:,,则_____.16.已知数列是等差数列,若,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:,,数列满足:().(1)证明:数列是等比数列;(2)求数列的前项和,并比较与的大小.18.一个工厂在某年里连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:x1.081.121.191.281.361.481.591.681.801.87y2.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(2)①建立月总成本y与月产量x之间的回归方程;②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:=14.45,=27.31,=0.850,=1.042,=1.1.②参考公式:相关系数:r=.回归方程=x+中斜率和截距的最小二乘估计公式分别为:=,=-19.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.20.已知等比数列为递增数列,,,数列满足.(1)求数列的通项公式;(2)求数列的前项和.21.已知函数为奇函数,且.(1)求实数a与b的值;(2)若函数,数列为正项数列,,且当,时,,设(),记数列和的前项和分别为,且对有恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

将国庆七天认购量和成交量从小到大排列,即可判断①;计算成交量的平均值,可由成交量数据判断②;由图可判断③;计算认购量的平均值与方差,成交量的平均值与方差,对方差比较即可判断④.【详解】国庆七天认购量从小到大依次为:91,100,105,107,112,223,276成交量从小到大依次为:8,13,16,26,32,38,166对于①,成交量的中为数为26,所以①正确;对于②,成交量的平均值为,有1天成交量超过平均值,所以②错误;对于③,由图可知认购量与日期没有正相关性,所以③错误;对于④,10月2日到10月6日认购量的平均值为方差为10月2日到10月6日成交量的平均值为方差为所以由方差性质可知,10月2日到10月6日认购量的分散程度比成交量的分散程度更小,所以④错误;综上可知,错误的为②③④故选:B【点睛】本题考查了统计的基本内容,由图示分析计算各个量,利用方差比较数据集中程度,属于基础题.2、C【解析】

根据,,得到,,平方计算得到最小值.【详解】故答案为C【点睛】本题考查了向量的模,向量运算,均值不等式,意在考查学生的计算能力.3、C【解析】

根据复合函数单调性,结合对数型函数的定义域列不等式组,解不等式组求得的取值范围.【详解】由于的底数为,而函数在上是减函数,根据复合函数单调性同增异减可知,结合对数型函数的定义域得,解得.故选:C【点睛】本小题主要考查根据对数型复合函数单调性求参数的取值范围,属于基础题.4、B【解析】

画出不等式组表示的平面区域如图所示:当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以,解得,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.5、D【解析】

根据三角形解的个数的判断条件得出各选项中对应的解的个数,于此可得出正确选项.【详解】对于A选项,,,此时,无解;对于B选项,,,此时,有两解;对于C选项,,则为最大角,由于,此时,无解;对于D选项,,且,此时,有且只有一解.故选D.【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形个数的判断条件,考查推理能力,属于中等题.6、D【解析】

在区间上,且满足所得区间为,利用区间的长度比,即可求解.【详解】由题意,在区间上,且满足所得区间为,由长度比的几何概型,可得概率为,故选D.【点睛】本题主要考查了长度比的几何概型的概率的计算,其中解答中认真审题,合理利用长度比求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、D【解析】试题分析:由于是的重心,,,代入得,整理得,,因此,故答案为D.考点:1、平面向量基本定理;2、余弦定理的应用.8、C【解析】

利用斜率公式求出直线AB,根据斜率值求出直线AB的倾斜角.【详解】直线AB的斜率为kAB=3-02-1【点睛】本题考查直线的倾斜角的求解,考查直线斜率公式的应用,考查计算能力,属于基础题。9、A【解析】由图可知这些点分布在一条斜率大于零的直线附近,所以为正相关,即相关系数因为所以回归直线的方程必过点,即直线恰好过点;因为直线斜率接近于AD斜率,而,所以③错误,综上正确结论是①②,选A.10、B【解析】试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】设由正弦定理得12、8.2【解析】

设仓库与车站距离为公里,可得出、关于的函数关系式,然后利用双勾函数的单调性求出的最小值.【详解】设仓库与车站距离为公里,由已知,.费用之和,求中,由双勾函数的单调性可知,函数在区间上单调递减,所以,当时,取得最小值万元,故答案为:.【点睛】本题考查利用双勾函数求最值,解题的关键就是根据题意建立函数关系式,再利用基本不等式求最值时,若等号取不到时,可利用相应的双勾函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.13、54.【解析】

设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【详解】设首项为,公差为,由题意,可得解得所以.【点睛】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.14、【解析】

对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【详解】,即数列是以为首项,为公差的等差数列故答案为:【点睛】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.15、【解析】

从开始,直接代入公式计算,可得的值.【详解】解:由题意得:,,,,故答案为:.【点睛】本题主要考查数列的递推公式及数列的性质,相对简单.16、【解析】

求出公差,利用通项公式即可求解.【详解】设公差为,则所以故答案为:【点睛】本题主要考查了等差数列基本量的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见解析【解析】

(1)将原式变形为,进而得到结果;(2)根据第一问得到,错位相减得到结果.【详解】(1)由条件得,易知,两边同除以得,又,故数列是等比数列,其公比为.(2)由(1)知,则……①……②两式相减得即.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.18、(1)见解析;(2)①;②3.385万元.【解析】

(1)由已知条件利用公式,求得的值,再与比较大小即可得结果;(2)根据所给的数据,做出变量的平均数,根据样本中心点一定在线性回归方程上,求出的值,写出线性回归方程;将代入所求线性回归方程求出对应的的值即可.【详解】(1)由已知条件得:,这说明与正相关,且相关性很强.(2)①由已知求得,所以所求回归直线方程为.②当时,(万元),此时产品的总成本为3.385万元.【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19、⑴(2)【解析】

⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【点睛】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等20、(1)(2)【解析】

(1)利用等比数列的下标性质,可以由,得到,通过解方程组,结合已知可以求出的值,这样可以求出公比,最后可以求出等比数列的通项公式,最后利用对数的运算性质可以求出数列的通项公式;(2)利用错位相消法可以求出数列的前项和.【详解】解(1)∵是等比数列∴又∵由是递增数列解得,且公比∴(2),两式相减得:∴【点睛】本题考查了等比数列下标的性质,考查了求等比数列通项公式,考查了对数运算的性质,考查了错位相消法,考查了数学运算能力.21、(1);(2)【解析】

(1)根据函数奇偶性得到,再由,得;(2),将原式化简得到,进而得到,数列的前项和,,原恒成立问题转化为对恒成立,对n分奇偶得到最值即可.【详解】(1)因为为奇函数,,得,又,得.(2)由(1)知,得,又,化简得到:,又,所以,又,故,则数列的前项和;又,则数列的前项和为,对恒成立对恒成立对恒成立,令,则当为奇数时,原不等式对恒成立对恒成立,又函数在上单增,故有;当为偶数时,原不等式对恒成立对恒成立,又函数在上单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论