




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河南省开封市、商丘市九校高一数学第二学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D.2.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.3.已知向量,,若,则()A. B. C. D.4.与直线平行,且与直线交于轴上的同一点的直线方程是()A. B. C. D.5.某小组由名男生、名女生组成,现从中选出名分别担任正、副组长,则正、副组长均由男生担任的概率为()A. B. C. D.6.在正方体中,与棱异面的棱有()A.8条 B.6条 C.4条 D.2条7.已知圆:及直线:,当直线被截得的弦长为时,则等于()A. B. C. D.8.已知则的值为()A. B. C. D.9.已知向量,满足,和的夹角为,则()A. B. C. D.110.已知,则的值等于()A.2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若复数(为虚数单位),则的共轭复数________12.直线的倾斜角为______.13.若,且,则是第_______象限角.14.已知函数是定义域为的偶函数,当时,,若关于的方程有且仅有6个不同实数根,则实数的取值范围为______.15.已知,,则________(用反三角函数表示)16.函数在的递减区间是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,D是BC边上的一点,,,.(1)求的大小;(2)求边的长.18.已知数列的递推公式为.(1)求证:数列为等比数列;(2)求数列的通项公式.19.已知直线经过点,斜率为1.(1)求直线的方程;(2)若直线与直线:的交点在第二象限,求的取值范围.20.已知向量a=(5sin(1)求cos(α+β)(2)若0<α<β<π2,且sinα=21.求过三点的圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
画出图象及直线,借助图象分析.【详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求.即,即,或者,得,,即,得,所以的取值范围是.故选D.【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.2、A【解析】
求出函数的周期,函数的奇偶性,判断求解即可.【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.3、B【解析】
∵,∴.∴,即,∴,,故选B.【考点定位】向量的坐标运算4、A【解析】
直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【详解】与直线平行直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【点睛】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.5、B【解析】
根据古典概型的概率计算公式,先求出基本事件总数,正、副组长均由男生担任包含的基本事件总数,由此能求出正、副组长均由男生担任的概率.【详解】某小组由2名男生、2名女生组成,现从中选出2名分别担任正、副组长,基本事件总数,正、副组长均由男生担任包含的基本事件总数,正、副组长均由男生担任的概率为.故选.【点睛】本题主要考查古典概型的概率求法。6、C【解析】
在正方体12条棱中,找到与平行的、相交的棱,然后计算出与棱异面的棱的条数.【详解】正方体共有12条棱,其中与平行的有共3条,与与相交的有共4条,因此棱异面的棱有条,故本题选C.【点睛】本题考查了直线与直线的位置关系,考查了异面直线的判断.7、C【解析】
求出圆心到直线的距离,由垂径定理计算弦长可解得.【详解】由题意,圆心为,半径为2,圆心到直线的距离为,所以,解得.故选:C.【点睛】本题考查直线与圆相交弦长问题,解题方法由垂径定理得垂直,由勾股定理列式计算.8、B【解析】
直接利用两角和的正切函数化简求解即可.【详解】tan(α+β),tan(β),则tan(α)=tan((α+β)﹣(β)).故选B.【点睛】本题考查两角和与差的三角函数公式的应用,考查计算能力.9、B【解析】
由平面向量的数量积公式,即可得到本题答案.【详解】由题意可得.故选:B.【点睛】本题主要考查平面向量的数量积公式,属基础题.10、D【解析】
根据分段函数的定义域以及函数解析式的关系,代值即可.【详解】故选:D【点睛】本题考查了分段函数的求值问题,考查了学生综合分析,数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z=i(2﹣i)=1+2i,得.故答案为1﹣2i.【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题.12、【解析】
先求得直线的斜率,进而求得直线的倾斜角.【详解】由于直线的斜率为,故倾斜角为.【点睛】本小题主要考查由直线一般式方程求斜率,考查斜率和倾斜角的对应关系,属于基础题.13、三【解析】
利用二倍角公式计算出的值,结合判断出角所在的象限.【详解】由二倍角公式得,又,因此,是第三象限角,故答案为三.【点睛】本题考查利用三角函数值的符号与角的象限之间的关系,考查了二倍角公式,对于角的象限与三角函数值符号之间的关系,充分利用“一全二正弦、三切四余弦”的规律来判断,考查分析问题与解决问题的能力,属于中等题.14、0<a≤或a.【解析】
运用偶函数的性质,作出函数f(x)的图象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),结合图象,分析有且仅有6个不同实数根的a的情况,即可得到a的范围.【详解】函数是定义域为的偶函数,作出函数f(x)的图象如图:关于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),当0≤x≤2时,f(x)∈[0,],x>2时,f(x)∈(,).由,则f(x)有4个实根,由题意,只要f(x)=a有2个实根,则由图象可得当0<a≤时,f(x)=a有2个实根,当a时,f(x)=a有2个实根.综上可得:0<a≤或a.故答案为0<a≤或a..【点睛】本题考查函数的奇偶性和单调性的运用,考查方程和函数的转化思想,运用数形结合的思想方法是解决的常用方法.15、【解析】∵,,∴.故答案为16、【解析】
利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)在中,由余弦定理运算即可;(2)在中,由正弦定理运算即可.【详解】解:(1)在中,,,,由余弦定理可得,又,即;(2)由(1)得,在中,,,由正弦定理可得:,即.【点睛】本题考查了正弦定理、余弦定理的应用,属基础题.18、(1)证明见解析;(2).【解析】
(1)直接利用数列的递推关系式证明结论;(2)由(1)可求出数列的通项公式,进而得到的通项公式.【详解】(1)∵数列{an}的首项a1=2,且,∴an+1+=3(an+),即∴是首项为,公比为3的等比数列;(2)由(1)可得a1+=,∴,∴数列的通项公式.【点睛】本题考查等比数列的证明考查了等比数列的通项公式,属于中档题.19、(1);(2)【解析】
(1)由条件利用用点斜式求直线的方程.(2)联立方程组求出直线与直线的交点坐标,再根据交点在第二象限,求得的取值范围.【详解】解:(1)由直线经过点,斜率为1,利用点斜式可得直线的方程为,即.(2)由,解得,故直线与直线的交点坐标为.交点在第二象限,故有,解得,即的取值范围为.【点睛】本题主要考查用点斜式求直线的方程,求直线的交点坐标,属于基础题.20、(1)cos(α+β)=2【解析】
(1)根据向量数列积的坐标运算,化简整理得到5cos(2)根据题中条件求出cosα=310再由cos(2α+β)=【详解】解:(1)因为a=(所以a⋅=5因为a⋅b=2,所以5(2)因为0<α<π
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林公园生态旅游市场营销考核试卷
- 游乐场设备智能监测技术考核试卷
- 橡胶制品在船舶制造行业中的应用研究考核试卷
- 生态环境保护法律法规考核试卷
- 社区反贫困与可持续发展考核试卷
- 消费级机器人传感器技术与应用考核试卷
- 游戏行业法律法规及合规管理考核试卷
- 油气仓储自动化控制考核试卷
- 旅馆业供应链与物流管理考核试卷
- 昆明卫生职业学院《三维地质建模与可视化》2023-2024学年第二学期期末试卷
- 2025年中考数学一轮复习 -第六章 圆-第二节 与圆有关的位置关系
- 大学物理(一)知到智慧树章节测试课后答案2024年秋湖南大学
- 中建质量样板策划实施方案
- 湖北省武汉市2025届高三第一次模拟考试数学试卷含解析
- 2025届新高考语文古诗文理解性默写汇编(新高考60篇含答案)
- 《数字中国建设整体布局规划》解读报告
- 《石油化工金属管道布置设计规范》SHT3012-2011
- 2024年大学物理磁场教案设计示范
- 国开汽车学院《项目管理》形考作业1-4答案
- 医学影像科提高诊断报告与手术后符合率持续性改进PDCA
- 2024年江苏省苏州市中考生物试卷含答案
评论
0/150
提交评论