河南省郑州市金水区实验中学2023-2024学年数学高一下期末考试模拟试题含解析_第1页
河南省郑州市金水区实验中学2023-2024学年数学高一下期末考试模拟试题含解析_第2页
河南省郑州市金水区实验中学2023-2024学年数学高一下期末考试模拟试题含解析_第3页
河南省郑州市金水区实验中学2023-2024学年数学高一下期末考试模拟试题含解析_第4页
河南省郑州市金水区实验中学2023-2024学年数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省郑州市金水区实验中学2023-2024学年数学高一下期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则该几何体的体积为()A.10 B.20 C.30 D.602.已知向量,,则向量在向量方向上的投影为()A. B. C.-1 D.13.化为弧度是A. B. C. D.4.在中,已知其面积为,则=()A. B. C. D.5.已知实数满足,则的最大值为()A. B. C. D.6.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.7.已知一个扇形的圆心角为,半径为1.则它的弧长为()A. B. C. D.8.已知tan(α+π5A.1B.-57C.9.已知向量,.且,则()A.2 B. C. D.10.在△ABC中角ABC的对边分别为A.B.c,cosC=,且acosB+bcosA=2,则△ABC面积的最大值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列,,若该数列是减数列,则实数的取值范围是__________.12.在中,角A,B,C所对的边分别为a,b,c,若的面积为,则的最大值为________.13.若正四棱锥的底面边长为,侧棱长为,则该正四棱锥的体积为______.14.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:宽带租户业主已安装未安装则该小区已安装宽带的居民估计有______户.15.函数且的图象恒过定点A,若点A在直线上(其中m,n>0),则的最小值等于__________.16.若点,是圆C:上不同的两点,且,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.18.已知是等差数列,为其前项和,且,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.19.已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证:.20.已知函数.(1)求的值;(2)设,求的值.21.已知数列为等比数列,,公比,且成等差数列.(1)求数列的通项公式;(2)设,,求使的的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由三视图可知几何体为四棱锥,利用四棱锥体积公式可求得结果.【详解】由三视图可知,该几何体为底面为长为,宽为的长方形,高为的四棱锥四棱锥体积本题正确选项:【点睛】本题考查根据三视图求解几何体体积的问题,关键是能够通过三视图将几何体还原为四棱锥,从而利用棱锥体积公式来进行求解.2、A【解析】

根据投影的定义和向量的数量积求解即可.【详解】解:∵,,∴向量在向量方向上的投影,故选:A.【点睛】本题主要考查向量的数量积的定义及其坐标运算,属于基础题.3、D【解析】

由于,则.【详解】因为,所以,故选D.【点睛】本题考查角度制与弧度制的互化.4、C【解析】或(舍),故选C.5、A【解析】

由原式,明显考查斜率的几何意义,故上下同除以得,再画图分析求得的取值范围,再用基本不等式求解即可.【详解】所求式,上下同除以得,又的几何意义为圆上任意一点到定点的斜率,由图可得,当过的直线与圆相切时取得临界条件.当过坐标为时相切为一个临界条件,另一临界条件设,化成一般式得,因为圆与直线相切,故圆心到直线的距离,所以,,解得,故.设,则,又,故,当时取等号.故,故选A.【点睛】本题主要考查斜率的几何意义,基本不等式的用法等.注意求斜率时需要设点斜式,利用圆心到直线的距离等于半径列式求得斜率,在用基本不等式时要注意取等号的条件.6、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.7、C【解析】

直接利用扇形弧长公式求解即可得到结果.【详解】由扇形弧长公式得:本题正确选项:【点睛】本题考查扇形弧长公式的应用,属于基础题.8、D【解析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=9、B【解析】

通过得到,再利用和差公式得到答案.【详解】向量,.且故答案为B【点睛】本题考查了向量平行,正切值的计算,意在考查学生的计算能力.10、D【解析】

首先利用同角三角函数的关系式求出sinC的值,进一步利用余弦定理和三角形的面积公式及基本不等式的应用求出结果.【详解】△ABC中角ABC的对边分别为a、b、c,cosC,利用同角三角函数的关系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.则,△ABC面积的最大值为,故选D.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,基本不等式的应用,主要考查学生的运算能力和转换能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

本题可以先通过得出的解析式,再得出的解析式,最后通过数列是递减数列得出实数的取值范围.【详解】,因为该数列是递减数列,所以即因为所以实数的取值范围是.【点睛】本题考察的是递减数列的性质,递减数列的后一项减去前一项的值一定是一个负值.12、【解析】

先求得的值,再利用两角和差的三角公式和正弦函数的最大值,求得的最大值.【详解】中,若的面积为,,.,当且仅当时,取等号,故的最大值为,故答案为:.【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.13、4.【解析】

设正四棱锥的高为PO,连结AO,在直角三角形POA中,求得高,利用体积公式,即可求解.【详解】由题意,如图所示,正四棱锥P-ABCD中,AB=,PA=设正四棱锥的高为PO,连结AO,则AO=,在直角三角形POA中,,∴.【点睛】本题主要考查了正棱锥体积的计算,其中解答中熟记正棱锥的性质,以及棱锥的体积公式,准确计算是解答的关键,着重考查了推理与运算能力.14、【解析】

计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.15、1【解析】

由题意可得定点,,把要求的式子化为,利用基本不等式求得结果.【详解】解:且令解得,则即函数过定点,又点在直线上,,则,当且仅当时,等号成立,故答案为:1.【点睛】本题考查基本不等式的应用,函数图象过定点问题,把要求的式子化为,是解题的关键,属于基础题.16、【解析】

由,再结合坐标运算即可得解.【详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【点睛】本题考查了向量模的运算,重点考查了运算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出的通项公式.

(Ⅱ)由,,能求出数列的前n项和.【详解】(Ⅰ)设等差数列的公差为,则解得,∴.(Ⅱ).18、(1)(2)【解析】

(1)由等差数列的通项公式和前n项和公式,利用已知条件求出首项和公差,由此能求出an=2n+3(2)由得,由此能求出数列的前项和.【详解】解:(1)是等差数列,为其前项和解得:.(2),,,又.是以3为首项2为公比的等比数列.【点睛】本题考查数列的通项公式的求法,考查数列的前项和的求法解题时要认真审题注意等差数列和等比数列的性质的灵活运用.19、(1).(2)见解析.【解析】(1)由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求(2)由(1)可得,利用裂项相消法可求和,即可证明.试题分析:(1)(2)试题解析:(1)由知,当即所以而故数列是以1为首项,1为公差的等差数列,且(2)因为所以考点:数列递推式;等差关系的确定;数列的求和20、(1);(2).【解析】试题分析:(1)直接带入求值;(2)将和直接带入函数,会得到和的值,然后根据的值.试题解析:解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论