版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河南省九师商周联盟高一下数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的导函数的图象如图所示,则()A.既有极小值,也有极大值 B.有极小值,但无极大值C.有极大值,但无极小值 D.既无极小值,也无极大值2.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.在中,已知a,b,c分别为,,所对的边,且a,b,c成等差数列,,,则()A. B. C. D.4.如图,为正方体,下面结论错误的是()A.异面直线与所成的角为45° B.平面C.平面平面 D.异面直线与所成的角为45°5.数列,…的一个通项公式是()A.B.C.D.6.从总数为的一批零件中抽取一个容量为的样本,若每个零件被抽取的可能性为,则为()A. B. C. D.7.直线,,的斜率分别为,,,如图所示,则()A. B.C. D.8.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.759.已知,,,,则()A. B. C.或 D.或10.数列中,对于任意,恒有,若,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设的内角,,所对的边分别为,,.已知,,如果解此三角形有且只有两个解,则的取值范围是_____.12.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.13.读程序,完成下列题目:程序如图:(1)若执行程序时,没有执行语句,则输入的的范围是_______;(2)若执行结果,输入的的值可能是___.14.在△ABC中,若∠A=120°,AB=5,BC=7,则△ABC的面积S=_____.15.在中,两直角边和斜边分别为a,b,c,若则实数x的取值范围是________.16.在空间直角坐标系中,点关于原点的对称点的坐标为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角A,B,C所对的边分别为a,b,c;已知.(1)求角B的大小;(2)若外接圆的半径为2,求面积的最大值.18.已知函数,其图象的一个对称中心是,将的图象向左平移个单位长度后得到函数的图象.(1)求函数的解析式;(2)若对任意,当时,都有,求实数的最大值;(3)若对任意实数在上与直线的交点个数不少于6个且不多于10个,求实数的取值范围.19.已知函数为奇函数,且.(1)求实数a与b的值;(2)若函数,数列为正项数列,,且当,时,,设(),记数列和的前项和分别为,且对有恒成立,求实数的取值范围.20.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:,,,…,后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在的概率.21.的内角,,的对边分别为,,,已知.(1)求角;(2)若,求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由导函数图象可知,在上为负,在上非负,在上递减,在递增,在处有极小值,无极大值,故选B.2、C【解析】
由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【点睛】本题考查了三角函数图像的平移变换,属基础题.3、B【解析】
利用成等差数列可得,再利用余弦定理构造的结构再代入求得即可.【详解】由成等差数列可得,由余弦定理有,即,解得,即.故选:B【点睛】本题主要考查了等差中项与余弦定理的运算,需要根据题意构造与的结构代入求解.属于中档题.4、A【解析】
根据正方体性质,依次证明线面平行和面面平行,根据直线的平行关系求异面直线的夹角.【详解】根据正方体性质,,所以异面直线与所成的角等于,,,所以不等于45°,所以A选项说法不正确;,四边形为平行四边形,,平面,平面,所以平面,所以B选项说法正确;同理可证:平面,是平面内两条相交直线,所以平面平面,所以C选项说法正确;,异面直线与所成的角等于,所以D选项说法正确.故选:A【点睛】此题考查线面平行和面面平行的判定,根据平行关系求异面直线的夹角,考查空间线线平行和线面平行关系的掌握5、D【解析】试题分析:由题意得,可采用验证法,分别令,即可作出选择,只有满足题意,故选D.考点:归纳数列的通项公式.6、A【解析】
由样本容量、总容量以及个体入样可能性三者之间的关系,列等式求出的值.【详解】由题意可得,解得,故选A.【点睛】本题考查抽样概念的理解,了解样本容量、总体容量以及个体入样可能性三者之间的关系是解题的关键,考查计算能力,属于基础题.7、A【解析】
根据题意可得出直线,,的倾斜角满足,由倾斜角与斜率的关系得出结果.【详解】解:设三条直线的倾斜角为,根据三条直线的图形可得,因为,当时,,当时,单调递增,且,故,即故选A.【点睛】本题考查了直线的倾斜角与斜率的关系,解题的关键是熟悉正切函数的单调性.8、D【解析】
由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.9、B【解析】
先根据角的范围及平方关系求出和,然后可算出,进而可求出【详解】因为,,,所以,,所以,所以因为,所以故选:B【点睛】在由三角函数的值求角时,应根据角的范围选择合适的三角函数,以免产生多的解.10、D【解析】因为,所以
,
.选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由余弦定理写出c与x的等式,再由有两个正解,解出x的取值范围【详解】根据余弦定理:代入数据并整理有,有且仅有两个解,记为则:【点睛】本题主要考查余弦定理以及韦达定理,属于中档题.12、【解析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=13、2【解析】
(1)不执行语句,说明不满足条件,,从而得;(2)执行程序,有当时,,只有,.【详解】(1)不执行语句,说明不满足条件,,故有.(2)当时,,只有,.故答案为:(1)(2);【点睛】本题主要考察程序语言,考查对简单程序语言的阅读理解,属于基础题.14、【解析】
用余弦定理求出边的值,再用面积公式求面积即可.【详解】解:据题设条件由余弦定理得,即,即解得,故的面积,故答案为:.【点睛】本题主要考查余弦定理解三角形,考查三角形的面积公式,属于基础题.15、【解析】
计算得到,根据得到范围.【详解】两直角边和斜边分别为a,b,c,则,则,则,故.故答案为:.【点睛】本题考查了正弦定理和三角函数的综合应用,意在考查学生的综合应用能力.16、【解析】
空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.【详解】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.点关于原点的对称点的坐标为故答案为:【点睛】本题考查了空间直角坐标系关于原点对称,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用正弦定理与余弦的差角公式运算求解即可.(2)根据正弦定理可得,再利用余弦定理与基本不等式求得再代入面积求最大值即可.【详解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)结合(1)由正弦定理可知,由余弦定理可知,所以当且仅当时等号成立,所以,所以面积的最大值为.【点睛】本题主要考查了正余弦定理与三角形面积公式在解三角形中的运用.同时考查了根据基本不等式求解三角形面积的最值问题.属于中档题.18、(1);(2);(3).【解析】
(1)根据正弦函数的对称性,可得函数的解析式,再由函数图象的平移变换法则,可得函数的解析式;(2)将不等式进行转化,得到函数在[0,t]上为增函数,结合函数的单调性进行求解即可;(3)求出的解析式,结合交点个数转化为周期关系进行求解即可.【详解】(1)因为函数,其图象的一个对称中心是,所以有,的图象向左平移个单位长度后得到函数的图象.所以;(2)由,构造新函数为,由题意可知:任意,当时,都有,说明函数在上是单调递增函数,而的单调递增区间为:,而,所以单调递增区间为:,因此实数的最大值为:;(3),其最小正周期,而区间的长度为,直线的交点个数不少于6个且不多于10个,则,且,解得:.【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.19、(1);(2)【解析】
(1)根据函数奇偶性得到,再由,得;(2),将原式化简得到,进而得到,数列的前项和,,原恒成立问题转化为对恒成立,对n分奇偶得到最值即可.【详解】(1)因为为奇函数,,得,又,得.(2)由(1)知,得,又,化简得到:,又,所以,又,故,则数列的前项和;又,则数列的前项和为,对恒成立对恒成立对恒成立,令,则当为奇数时,原不等式对恒成立对恒成立,又函数在上单增,故有;当为偶数时,原不等式对恒成立对恒成立,又函数在上单增,故有.综上得.【点睛】这个题目考查了函数的奇偶性的应用以及数列通项公式的求法,数列前n项和的求法,还涉及不等式恒成立的问题,属于综合性较强的题目,数列中最值的求解方法如下:1.邻项比较法,求数列的最大值,可通过解不等式组求得的取值范围;求数列的最小值,可通过解不等式组求得的取值范围;2.数形结合,数列是一特殊的函数,分析通项公式对应函数的特点,借助函数的图像即可求解;3.单调性法,数列作为特殊的函数,可通过函数的单调性研究数列的单调性,必须注意的是数列对应的是孤立的点,这与连续函数的单调性有所不同;也可以通过差值的正负确定数列的单调性.20、(1)众数为75,中位数为73.33;(2).【解析】
(1)由频率分布直方图能求出a=0.1.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数,这两人的分数至少一人落在[50,60)包含的基本事件个数,由此能求出这两人的分数至少一人落在[50,60)的概率.【详解】(1)由频率分布直方图得:,
解得,
所以众数为:,的频率为,
的频率为,
中位数为:.(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,
的频率为0.1,的频率为0.15,
中抽到人,中抽取人,从这五人中任选两人参加补考,
基本事件总数,这两人的分数至少一人落在包含的基本事件个数,所以这两人的分数至少一人落在的概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度木材行业市场调研与营销策划合同4篇
- 2025年企业投资贷款合同
- 2025年家具家电购买合同
- 2025年分期付款汽车销售合同
- 2025年天然气输气管道合作协议
- 2025版住宅小区水电暖消防系统改造与节能评估服务合同3篇
- 2025年健身健康检测合同
- 2025年二手房合同样本
- 二零二五至二零二五年度通信设备采购合同2篇
- 2025版屋面防水劳务分包合同(含防水检测服务)3篇
- 狮子王影视鉴赏
- 一年级数学加减法口算题每日一练(25套打印版)
- 2024年甘肃省武威市、嘉峪关市、临夏州中考英语真题
- DL-T573-2021电力变压器检修导则
- 绘本《图书馆狮子》原文
- 安全使用公共WiFi网络的方法
- 2023年管理学原理考试题库附答案
- 【可行性报告】2023年电动自行车相关项目可行性研究报告
- 欧洲食品与饮料行业数据与趋势
- 放疗科室规章制度(二篇)
- 中高职贯通培养三二分段(中职阶段)新能源汽车检测与维修专业课程体系
评论
0/150
提交评论