




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆阿克苏市阿瓦提县第四中学2024届数学高一下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差2.设某曲线上一动点到点的距离与到直线的距离相等,经过点的直线与该曲线相交于,两点,且点恰为等线段的中点,则()A.6 B.10 C.12 D.143.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.4.执行如图所示的程序框图,若输人的n值为2019,则S=A.-1 B.-12 C.15.为了得到函数的图象,只需把函数的图象上的所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与7.将一个总体分为甲、乙、丙三层,其个体数之比为,若用分层抽样的方法抽取容量为200的样本,则应从丙层中抽取的个体数为()A.20 B.40 C.60 D.1008.将函数的图象向左平移个长度单位后,所得到的图象关于()对称.A.轴 B.原点 C.直线 D.点9.若,且,恒成立,则实数的取值范围是()A. B.C. D.10.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=A. B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,则_________.12.已知不等式的解集为,则________.13.数列满足,(且),则数列的通项公式为________.14.函数且的图象恒过定点A,若点A在直线上(其中m,n>0),则的最小值等于__________.15.在长方体中,,,,如图,建立空间直角坐标系,则该长方体的中心的坐标为_________.16.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,若,且,,求满足条件的,.18.解下列方程(1);(2);19.在正△ABC中,AB=2,(t∈R).(1)试用,表示:(2)当•取得最小值时,求t的值.20.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;
直线MN的方程.21.已知函数是指数函数.(1)求的表达式;(2)判断的奇偶性,并加以证明(3)解不等式:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.2、B【解析】由曲线上一动点到点的距离与到直线的距离相等知该曲线为抛物线,其方程为,分别过点向抛物线的准线作垂线,垂足分别为,由梯形的中位线定理知,所以,故选B.3、D【解析】
c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.4、B【解析】
根据程序框图可知,当k=2019时结束计算,此时S=cos【详解】计算过程如下表所示:周期为6n2019k12…20182019S12-1…-k<n是是是是否故选B.【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.5、D【解析】
把系数2提取出来,即即可得结论.【详解】,因此要把图象向右平移个单位.故选D.【点睛】本题考查三角函数的图象平移变换.要注意平移变换是加减平移单位,即向右平移个单位得图象的解析式为而不是.6、C【解析】
利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【点睛】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.7、B【解析】
求出丙层所占的比例,然后求出丙层中抽取的个体数【详解】因为甲、乙、丙三层,其个体数之比为,所以丙层所占的比例为,所以应从丙层中抽取的个体数为,故本题选B.【点睛】本题考查了分层抽样中某一层抽取的个体数的问题,考查了数学运算能力.8、A【解析】
先利用辅助角公式将未变换后的函数解析式化简,再根据图象变换规律得出变换后的函数的解析式为,结合余弦函数的对称性来进行判断。【详解】,函数的图象向左平移个长度单位后得到,函数的图象关于轴对称,故选:A.【点睛】本题考查三角函数的图象变换,以及三角函数的对称性,在考查三角函数的基本性质问题时,应该将三角函数的解析式化为一般形式,并借助三角函数的图象来理解。9、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.10、B【解析】
画出不等式组表示的平面区域如图所示:当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以,解得,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】本题主要考查函数)的图象变换规律,属于中档题.12、-7【解析】
结合一元二次不等式和一元二次方程的性质,列出方程组,求得的值,即可得到答案.【详解】由不等式的解集为,可得,解得,所以.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,以及一元二次方程的性质,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】
利用累加法和裂项求和得到答案.【详解】当时满足故答案为【点睛】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.14、1【解析】
由题意可得定点,,把要求的式子化为,利用基本不等式求得结果.【详解】解:且令解得,则即函数过定点,又点在直线上,,则,当且仅当时,等号成立,故答案为:1.【点睛】本题考查基本不等式的应用,函数图象过定点问题,把要求的式子化为,是解题的关键,属于基础题.15、【解析】
先求出点B的坐标,再求出M的坐标.【详解】由题得B(4,6,0),,因为M点是中点,所以点M坐标为.故答案为【点睛】本题主要考查空间坐标的求法,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,【解析】
利用三角恒等变换,化简的解析式,从而得出结论.【详解】解:,∴,待定系数,可得,又,∴,∴,.【点睛】本题主要考查三角恒等变换,属于基础题.18、(1)或;(2);【解析】
(1)由,得,解方程即可.(2)由已知得到,解得即可.【详解】(1),,或,或.(2),,解得.【点睛】本题考查了指数型、对数型方程,考查了指数、对数的运算,属于基础题.19、(1)(2)【解析】
(1)根据即可得出,从而解得;(2)由(1)得,根据得,从而进行数量积的运算得出,配方即可得出当时,取最小值.【详解】(1)∵;∴;∴;(2)∵△ABC是正三角形,且AB=2;∴;∵;∴;∴∴时,取最小值.【点睛】本题考查向量减法、加法的几何意义,向量的数乘运算,以及向量的数量积运算及计算公式,配方法解决二次函数问题的方法,属于基础题.20、(1);(2).【解析】试题分析:(1)边AC的中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为1,同理,B,C两点的纵坐标和的平均数为1.构造方程易得C点的坐标.(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即可求出直线MN的方程.解:(1)设点C(x,y),∵边AC的中点M在y轴上得=1,∵边BC的中点N在x轴上得=1,解得x=﹣5,y=﹣2.故所求点C的坐标是(﹣5,﹣2).(2)点M的坐标是(1,﹣),点N的坐标是(1,1),直线MN的方程是=,即5x﹣2y﹣5=1.点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 客户获取中的情感营销策略-全面剖析
- 利用大数据优化远程医疗决策支持系统-全面剖析
- 2025-2030超滤机行业市场发展分析及前景趋势与投资战略研究报告
- 2025-2030贝力纸产业市场深度调研及发展趋势与投资研究报告
- 2025-2030聚酯合成纸行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030纸巾包装机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030红外辐射测温仪行业市场发展分析及发展趋势前景预测报告
- 2025-2030空气软管和风管软管行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030电渗析逆转(EDR)系统行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030游戏媒体行业行业风险投资发展分析及投资融资策略研究报告
- 建筑工程材料采购管理职责
- 实时数字孪生数据同步技术-深度研究
- Unit 4 History and traditions Project 说课稿 -2024-2025学年高中英语人教版(2019)必修第二册
- 【道法】历久弥新的思想理念课件 2024-2025学年统编版道德与法治七年级下册
- 【培训课件】DOE培训
- 2025年高考数学备考立体几何压轴题(八省联考新考向)
- 《浅谈A企业消防安全管理中存在的问题及完善对策研究》6300字(论文)
- 秦汉考古Uooc课程答案
- 《电力建设工程施工安全管理导则》(NB∕T 10096-2018)
- 医疗器械考试题及答案
- 画饼充饥儿童故事绘本 课件
评论
0/150
提交评论