




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南豫南九校2023-2024学年高一下数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为()A.20,22.5 B.22.5,25 C.22.5,22.75 D.22.75,22.752.已知数列an的前4项为:l,-12,13,A.an=C.an=3.已知α、β为锐角,cosα=,tan(α−β)=−,则tanβ=()A. B.3 C. D.4.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为万元,则10时到11时的销售额为()A.万元 B.万元 C.万元 D.万元5.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A. B. C. D.6.已知向量,满足,,,则与的夹角为()A. B. C. D.7.在锐角中,若,则角的大小为()A.30° B.45° C.60° D.75°8.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法9.如图是一个几何体的三视图,它对应的几何体的名称是()A.棱台 B.圆台 C.圆柱 D.圆锥10.数列中,对于任意,恒有,若,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且,则______.12.方程,的解集是__________.13.已知,,则________(用反三角函数表示)14.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的中位数为,乙加工零件个数的平均数为,则______.15.假设我国国民生产总值经过10年增长了1倍,且在这10年期间我国国民生产总值每年的年增长率均为常数,则______.(精确到)(参考数据)16.若直线与圆相交于,两点,且(其中为原点),则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C的对边分别是a,b,c,.(1)求角A的大小;(2)若,,求的面积.18.2019年4月20日,福建省人民政府公布了“3+1+2”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高小明同学是2018级的高一学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了化学与生物近10大联考的成绩百分比排名数据x(如x=19的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的19%)绘制茎叶图如下.(1)分别计算化学、生物两个学科10次联考的百分比排名的平均数;中位数;(2)根据已学的统计知识,并结合上面的数据,帮助小明作出选择.并说明理由.19.已知数列满足,,设.(1)求,,;(2)证明:数列是等比数列,并求数列和的通项公式.20.设,已知函数,.(1)若是的零点,求不等式的解集:(2)当时,,求的取值范围.21.在三棱锥中,平面平面,,,分别是棱,上的点(1)为的中点,求证:平面平面.(2)若,平面,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.【详解】:根据频率分布直方图,得平均数为1(12.1×0.02+17.1×0.04+22.1×0.08+27.1×0.03+32.1×0.03)=22.71,∵0.02×1+0.04×1=0.3<0.1,0.3+0.08×1=0.7>0.1;∴中位数应在20~21内,设中位数为x,则0.3+(x﹣20)×0.08=0.1,解得x=22.1;∴这批产品的中位数是22.1.故选C.【点睛】本题考查了利用频率分布直方图求数据的中位数平均数的应用问题,是基础题目.2、D【解析】
分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式【详解】正负相间用(-1)n-1表示,∴a故选D.【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律.3、B【解析】
利用角的关系,再利用两角差的正切公式即可求出的值.【详解】因为,且为锐角,则,所以,因为,所以故选B.【点睛】主要考查了两角差的正切公式,同角三角函数的平方关系,属于中档题.对于给值求值问题,关键是寻找已知角(条件中的角)与未知角(问题中的角)的关系,用已知角表示未知角,从而将问题转化为求已知角的三角函数值,再利用两角和与差的三角函数公式、二倍角公式以及诱导公式即可求出.4、C【解析】分析:先根据12时到14时的销售额为万元求出总的销售额,再求10时到11时的销售额.详解:设总的销售额为x,则.10时到11时的销售额的频率为1-0.1-0.4-0.25-0.1=0.15.所以10时到11时的销售额为.故答案为C.点睛:(1)本题主要考查频率分布直方图求概率、频数和总数,意在考查学生对这些基础知识的掌握水平.(2)在频率分布直方图中,所有小矩形的面积和为1,频率=.5、B【解析】试题分析:如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.考点:异面直线所成的角.【名师点睛】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.6、B【解析】
将变形解出夹角的余弦值,从而求出与的夹角.【详解】由得,即又因为,所以,所以,故选B.【点睛】本题考查向量的夹角,属于简单题.7、B【解析】
直接利用正弦定理计算得到答案.【详解】根据正弦定理得到:,故,是锐角三角形,故.故选:.【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.8、B【解析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.9、B【解析】
直接由三视图还原原几何体得答案.【详解】解:由三视图还原原几何体如图,该几何体为圆台.故选:.【点睛】本题考查三视图,关键是由三视图还原原几何体,属于基础题.10、D【解析】因为,所以
,
.选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据的坐标表示,即可得出,解出即可.【详解】,,.【点睛】本题主要考查平行向量的坐标关系应用.12、【解析】
用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.13、【解析】∵,,∴.故答案为14、44.5【解析】
由茎叶图直接可以求出甲的中位数和乙的平均数,求和即可.【详解】由茎叶图知,甲加工零件个数的中位数为,乙加工零件个数的平均数为,则.【点睛】本题主要考查利用茎叶图求中位数和平均数.15、【解析】
根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,结合题意可得,解可得的值,即可得答案.【详解】解:根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,则有,即,解可得:,故答案为:.【点睛】本题考查函数的应用,涉及指数、对数的运算,关键是得到关于的方程,属于基础题.16、【解析】
首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【点睛】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由,结合,得到求解.(2)据(1)知.再由余弦定理求得边,再利用求解.【详解】(1)因为,,所以,所以,所以,或(舍去).又因为,所以.(2)由(1)知.由余弦定理得所以,即,所以(舍)或.所以的面积.【点睛】本题主要考查了余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.18、(1)化学平均数30.2;中位数26;生物平均数29.6;中位数31;(2)见解析【解析】
(1)直接利用平均数的公式和中位数的定义计算化学、生物两个学科10次联考的百分比排名的平均数和中位数;(2)从平均数或中位数的角度出发帮助小明选择.【详解】解:(1)化学学科全市百分比排名的平均数,化学学科联考百分比排名的中位数为.生物学科联考百分比排名的平均数,生物学科联考百分比排名的中位数为.(2)从平均数来看,小明的生物学科比化学学科百分比排名靠前,应选生物.或者:从中位数来看,小明的化学学科比生物学科百分比排名靠前,应选化学.【点睛】本题主要考查平均数的计算和中位数的计算,考查平均数和中位数的意义,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1),,;(2)证明见详解,,.【解析】
(1)根据递推公式,赋值求解即可;(2)利用定义,求证为定值即可,由数列通项公式即可求得和.【详解】(1)由条件可得,将代入得,,而,所以.将代入得,所以.从而,,.(2)由条件可得,即,,又,所以是首项为1,公比为3的等比数列,.因为,所以.【点睛】本题考查利用递推关系求数列某项的值,以及利用数列定义证明等比数列,及求通项公式,是数列综合基础题.20、(1);(2)【解析】
(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;(2)当时,,可将变为在上恒成立;分类讨论得到解析式,从而可得单调性;分别在、、三种情况下,利用构造不等式,解不等式求得结果.【详解】(1)是的零点由得:当时,,即,解得:当时,,即,解得:的解集为:(2)当时,,即:时,在上恒成立①当时,恒成立符合题意②当时,在上单调递增;在上单调递减;在上单调递增当时,,解得:当时,,解集为当时,,解得:综上所述,的取值范围为:【点睛】本题考查含绝对值不等式的求解、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论的方式去掉绝对值符号,结合函数单调性,将问题转化为所求参数与函数最值之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全标准化管理手册
- 门店管理和导购技巧
- 四川省甘孜藏族自治州炉霍县2025届五下数学期末经典模拟试题含答案
- 浙江树人学院《建筑专项实训》2023-2024学年第二学期期末试卷
- 合肥职业技术学院《德语口语》2023-2024学年第一学期期末试卷
- 天津城市职业学院《阅读与写作》2023-2024学年第二学期期末试卷
- 广州珠江职业技术学院《高级新闻写作兴趣小组》2023-2024学年第二学期期末试卷
- 上海市杨浦区2025年高三物理试题一轮复习典型题专项训练含解析
- 辽宁省葫芦岛市协作校2024-2025学年高三下学期第一次教学质量检测试题语文试题试卷含解析
- 江苏省盐城市响水中学2025届高三下5月调研考试语文试题试卷含解析
- CJJ89-2012 城市道路照明工程施工及验收规程
- 《包装结构设计》完整课件
- 股权转让通知函协议书
- 抽样调查典型案例分析报告
- 海口市国土空间总体规划(2020-2035)(公众版)
- 起重吊装及起重机械安装拆卸工程危大安全管理措施
- 从电影《第二十条》中学习刑法
- 2024年河南省许昌市九年级中考物理一模试卷+
- (2024年)AED(自动体外除颤器)使用指南
- (高清版)TDT 1036-2013 土地复垦质量控制标准
- 大学生朋辈心理辅导智慧树知到期末考试答案2024年
评论
0/150
提交评论