贵州省凯里市一中2024年数学高一下期末综合测试模拟试题含解析_第1页
贵州省凯里市一中2024年数学高一下期末综合测试模拟试题含解析_第2页
贵州省凯里市一中2024年数学高一下期末综合测试模拟试题含解析_第3页
贵州省凯里市一中2024年数学高一下期末综合测试模拟试题含解析_第4页
贵州省凯里市一中2024年数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省凯里市一中2024年数学高一下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代的“礼”“乐”“射”“御”“书”“数”合称“六艺”.某校国学社团准备于周六上午9点分别在6个教室开展这六门课程讲座,每位同学只能选择一门课程,则甲乙两人至少有人选择“礼”的概率是()A. B. C. D.2.已知直线,平面,给出下列命题:①若,且,则②若,且,则③若,且,则④若,且,则其中正确的命题是()A.①③ B.②④ C.③④ D.①②3.读下面的程序框图,若输入的值为-5,则输出的结果是()A.-1 B.0 C.1 D.24.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.645.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.6.已知两条直线m,n,两个平面α,β,下列命题正确是()A.m∥n,m∥α⇒n∥α B.α∥β,m⊂α,n⊂β⇒m∥nC.α⊥β,m⊂α,n⊂β⇒m⊥n D.α∥β,m∥n,m⊥α⇒n⊥β7.等差数列中,则()A.8 B.6 C.4 D.38.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.9.已知是奇函数,且.若,则()A.1 B.2 C.3 D.410.已知集合,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线y=b(0<b<1)与函数f(x)=sinωx(ω>0)在y轴右侧依次的三个交点的横坐标为x1=,x2=,x3=,则ω的值为______12.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.13.若、是方程的两根,则__________.14.若在区间(且)上至少含有30个零点,则的最小值为_____.15.若是等差数列,首项,,,则使前项和最大的自然数是________.16.如图,正方形中,分别为边上点,且,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)线段AD上是否存在点,使得它到平面PCD的距离为?若存在,求出值;若不存在,请说明理由.18.已知为常数且均不为零,数列的通项公式为并且成等差数列,成等比数列.(1)求的值;(2)设是数列前项的和,求使得不等式成立的最小正整数.19.已知圆与圆:关于直线对称.(1)求圆的标准方程;(2)已知点,若与直线垂直的直线与圆交于不同两点、,且是钝角,求直线在轴上的截距的取值范围.20.如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.21.现有一个算法框图如图所示。(1)试着将框图的过程用一个函数来表示;(2)若从中随机选一个数输入,则输出的满足的概率是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

甲乙两人至少有人选择“礼”的对立事件是甲乙两人都不选择“礼”,求出后者的概率即可【详解】由题意,甲和乙不选择“礼”的概率是,且相互独立所以甲乙两人都不选择“礼”的概率是所以甲乙两人至少有人选择“礼”的概率是故选:D【点睛】当遇到“至多”“至少”型题目时,一般用间接法求会比较简单,即先求出此事件的对立事件的概率,然后即可得出原事件的概率.2、A【解析】

根据面面垂直,面面平行的判定定理判断即可得出答案。【详解】①若,则在平面内必有一条直线使,又即,则,故正确。②若,且,与可平行可相交,故错误③若,即又,则,故正确④若,且,与可平行可相交,故错误所以①③正确,②④错误故选A【点睛】本题考查面面垂直,面面平行的判定,属于基础题。3、A【解析】

直接模拟程序框图运行,即可得出结论.【详解】模拟程序框图的运行过程如下:输入,进入判断结构,则,,输出,故选:A.【点睛】本题主要考查程序框图,一般求输出结果时,常模拟程序运行,列表求解.4、A【解析】

分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5、C【解析】

将1,2代入直线方程得到1a+2【详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【点睛】本题考查了直线方程,均值不等式,1的代换是解题的关键.6、D【解析】

在A中,n∥α或n⊂α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β.【详解】由两条直线m,n,两个平面α,β,知:在A中,m∥n,m∥α⇒n∥α或n⊂α,故A错误;在B中,α∥β,m⊂α,n⊂β⇒m与n平行或异面,故B错误;在C中,α⊥β,m⊂α,n⊂β⇒m与n相交、平行或异面,故C错误;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β,故D正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7、D【解析】

设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【详解】由题意,设等差数列的公差为,则,即,又由,故选D.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】

根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.9、C【解析】

根据题意,由奇函数的性质可得,变形可得:,结合题意计算可得的值,进而计算可得答案.【详解】根据题意,是奇函数,则,变形可得:,则有,即,又由,则,,故选:.【点睛】本题考查函数奇偶性的性质以及应用,涉及诱导公式的应用,属于基础题.10、A【解析】

先分别求出集合,,由此能求出.【详解】集合,,1,,或,,,.故选:.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由题得函数的周期为解之即得解.【详解】由题得函数的周期为.故答案为1【点睛】本题主要考查三角函数的图像和性质,考查三角函数的周期,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、【解析】

列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.13、【解析】

由题意利用韦达定理求得、的值,再利用两角差的正切公式,求得要求式子的值.【详解】解:、是方程的两根,,,,或,,则,故答案为:.【点睛】本题主要考查韦达定理,两角差的正切公式,属于基础题.14、【解析】

首先求出在上的两个零点,再根据周期性算出至少含有30个零点时的值即可【详解】根据,即,故,或,∵在区间(且)上至少含有30个零点,∴不妨假设(此时,),则此时的最小值为,(此时,),∴的最小值为,故答案为:【点睛】本题函数零点个数的判断,解决此类问题通常结合周期、函数图形进行解决。属于难题。15、【解析】

由已知条件推导出,,由此能求出使前项和成立的最大自然数的值.【详解】解:等差数列,首项,,,,.如若不然,,则,而,得,矛盾,故不可能.使前项和成立的最大自然数为.故答案为:.【点睛】本题考查等差数列的前项和取最大值时的值的求法,是中档题,解题时要认真审题,注意等差数列的通项公式的合理运用.16、(或)【解析】

先设,根据题意得到,再由两角和的正切公式求出,得到,进而可得出结果.【详解】设,则所以,所以,因此.故答案为【点睛】本题主要考查三角恒等变换的应用,熟记公式即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(Ⅰ)只需证明,又由面面垂直的性质定理知平面;(Ⅱ)连接、,假设存在点,使得它到平面的距离为,设,由,求得的值即可.试题解析:(Ⅰ)证明:在中,为中点,所以.又侧面底面,平面平面,平面,所以平面.(Ⅱ)连接、假设存在点,使得它到平面的距离为.设,则因为,为的中点,所以,且所以因为,且所以在中,所以所以由,即解得所以存在点满足题意,此时.考点:1.平面与平面垂直的性质;2.几何体的体积.18、(1);(2)【解析】

(1)由,可得,,,.根据、、成等差数列,、、成等比数列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分别利用等差数列与等比数列的求和公式即可得出.【详解】(1),,,,.,,成等差数列,,,成等比数列.,,,,,.联立解得:,.(2)由(1)可得:,,由,解得..【点睛】本题考查等差数列与等比数列的通项公式与求和公式及其性质、分类讨论方法、不等式的解法,考查推理能力与计算能力,属于中档题.19、(1);(2)【解析】

(1)根据两圆对称,直径一样,只需圆心对称即可得圆C的标准方程;(2)设直线l的方程为y=﹣x+m与圆C联立方程组,利用韦达定理,设而不求的思想即可求解b范围,即截距的取值范围.【详解】(1)圆的圆心坐标为,半径为2设圆的圆心坐标为,由题意可知解得:由对称性质可得,圆的半径为2,所以圆的标准方程为:(2)设直线的方程为,联立得:,设直线与圆的交点,,由,得,(1)因为为钝角,所以,且直线不过点即满足,且又,,所以(2)由(1)式(2)式可得,满足,即,因为,所以直线在轴上的截距的取值范围是【点睛】本题考查直线与圆的位置关系,是中档题,解题时要认真审题,注意韦达定理的合理运用.20、(1)见证明;(2)见证明【解析】

(1)由,,得,进而得即可证明平面.(2)平面得,由,,得,进而证明平面,则平面平面【详解】证明:(1)因为,,所以,所以,因为平面,平面,所以平面.(2)因为平面,平面,所以.因为,,所以,又,所以平面.又平面,所以平面平面.【点睛】本题考查线面平行的判定,面面垂直的判定,考查空间想象及推

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论