版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市延庆区2024届高一下数学期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等比数列中,则()A.81 B. C. D.2432.在中,已知角的对边分别为,若,,,,且,则的最小角的余弦值为()A. B. C. D.3.函数在区间(,)内的图象是()A. B. C. D.4.若直线上存在点满足则实数的最大值为A. B. C. D.5.以下有四个说法:①若、为互斥事件,则;②在中,,则;③和的最大公约数是;④周长为的扇形,其面积的最大值为;其中说法正确的个数是()A. B.C. D.6.已知等差数列前n项的和为,,,则()A.25 B.26 C.27 D.287.一组数据0,1,2,3,4的方差是A. B. C.2 D.48.一个几何体的三视图分别是一个正方形,一个矩形,一个半圆,尺寸大小如图所示,则该几何体的体积是()A. B. C. D.9.直线的倾斜角的大小为()A. B. C. D.10.已知曲线,如何变换可得到曲线()A.把上各点的横坐标伸长到原来的倍,再向右平移个单位长度B.把上各点的横坐标伸长到原来的倍,再向左平移个单位长度C.把上各点的横坐标缩短到原来的倍,再向右平移个单位长度D.把上各点的横坐标缩短到原来的倍,再向左平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若,则__________.12.若,且,则的最小值是______.13.两圆,相切,则实数=______.14.已知,那么__________.15.已知,均为单位向量,它们的夹角为,那么__________.16.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则an=_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(Ⅰ)求的值;(Ⅱ)若,求的值.18.已知菱形ABCD的边长为2,M为BD上靠近D的三等分点,且线段.(1)求的值;(2)点P为对角线BD上的任意一点,求的最小值.19.如图,在边长为2菱形ABCD中,,且对角线AC与BD交点为O.沿BD将折起,使点A到达点的位置.(1)若,求证:平面ABCD;(2)若,求三棱锥体积.20.已知数列为等差数列,且.(1)求数列的通项公式;(2)求数列的前项和.21.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值,并分别写出相应的的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】解:因为等比数列中,则,选A2、D【解析】
利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出.【详解】,由正弦定理,即,,,,解得,由大边对大角定理可知角是最小角,所以,,故选D.【点睛】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.3、D【解析】解:函数y=tanx+sinx-|tanx-sinx|=分段画出函数图象如D图示,故选D.4、B【解析】
首先画出可行域,然后结合交点坐标平移直线即可确定实数m的最大值.【详解】不等式组表示的平面区域如下图所示,由,得:,即C点坐标为(-1,-2),平移直线x=m,移到C点或C点的左边时,直线上存在点在平面区域内,所以,m≤-1,即实数的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.5、C【解析】
设、为对立事件可得出命题①的正误;利用大边对大角定理和余弦函数在上的单调性可判断出命题②的正误;列出和各自的约数,可找出两个数的最大公约数,从而可判断出命题③的正误;设扇形的半径为,再利用基本不等式可得出扇形面积的最大值,从而判断出命题④的正误.【详解】对于命题①,若、为对立事件,则、互斥,则,命题①错误;对于命题②,由大边对大角定理知,,且,函数在上单调递减,所以,,命题②正确;对于命题③,的约数有、、、、、,的约数有、、、、、、、,则和的最大公约数是,命题③正确;对于命题④,设扇形的半径为,则扇形的弧长为,扇形的面积为,由基本不等式得,当且仅当,即当时,等号成立,所以,扇形面积的最大值为,命题④错误.故选C.【点睛】本题考查命题真假的判断,涉及互斥事件的概率、三角形边角关系、公约数以及扇形面积的最值,判断时要结合这些知识点的基本概念来理解,考查推理能力,属于中等题.6、C【解析】
根据等差数列的求和与通项性质求解即可.【详解】等差数列前n项的和为,故.故.故选:C【点睛】本题主要考查了等差数列通项与求和的性质运用,属于基础题.7、C【解析】
先求得平均数,再根据方差公式计算。【详解】数据的平均数为:方差是=2,选C。【点睛】方差公式,代入计算即可。8、C【解析】
由给定的几何体的三视图得到该几何体表示一个底面半径为1,母线长为2的半圆柱,结合圆柱的体积公式,即可求解.【详解】由题意,根据给定的几何体的三视图可得:该几何体表示一个底面半径为1,母线长为2的半圆柱,所以该半圆柱的体积为.故选:C.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9、B【解析】
由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.10、D【解析】
用诱导公式把两个函数名称化为相同,然后再按三角函数图象变换的概念判断.【详解】,∴可把的图象上各点的横坐标缩短到原来的倍,再向左平移个单位长度或先向左平移个单位,再把图象上各点的横坐标缩短到原来的倍(纵坐标不变)可得的图象,故选:D.【点睛】本题考查三角函数的图象变换,解题时首先需要函数的前后名称相同,其次平移变换与周期变换的顺序不同时,平移的单位有区别.向左平移个单位所得图象的函数式为,而不是.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】由,得.即.解得.12、8【解析】
利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.13、0,±2【解析】
根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【点睛】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.14、2017【解析】,故,由此得.【点睛】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.15、.【解析】分析:由,均为单位向量,它们的夹角为,求出数量积,先将平方,再开平方即可的结果.详解:∵,故答案为.点睛:平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).16、【解析】
利用等比数列的前n项和公式列出方程组,求出首项与公比,由此能求出该数列的通项公式.【详解】由题意,,不合题意舍去;当等比数列的前n项和为,即,解得,所以,故答案为:.【点睛】本题主要考查了等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用两角和与差的正弦公式将已知两式展开,分别作和、作差可得,,再利用,即可求出结果;(Ⅱ)由已知求得,再由,利用两角差的余弦公式展开求解,即可求出结果.【详解】解:(I)①②由①+②得③由①-②得④由③÷④得(II)∵,,【点睛】本题主要考查了两角和差的正余弦公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.18、(1),(2)【解析】
(1)由结合,可求出,从而得到(2)建立直角坐标系,设,可得到,然后利用二次函数的知识求出最小值【详解】(1)如图,四边形ABCD为菱形,所以所以因为,所以可解得,所以所以是等边三角形,故(2)以A为原点,所在直线为x轴建立如图所示坐标系:则有,所以线段:设,则有,所以因为,所以当时取得最小值【点睛】本题考查平面向量数量积及其运算,涉及余弦定理,二次函数等基本知识,属于中档题.19、(1)见解析(2)【解析】
(1)证明与即可.(2)法一:证明平面,再过点做垂足为,证明为三棱锥的高再求解即可.法二:通过进行转化求解即可.法三:通过进行转化求解即可.【详解】证明:(1)∵在菱形ABCD中,,,AC与BD交于点O.以BD为折痕,将折起,使点A到达点的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中点,则且,因为且,,所以平面,过点做垂足为,则平面BCD,又∴,解得,∴三棱锥体积.(法二):因为,,取AC中点E,,,,又(法三)因为且,,所以平面,,所以.【点睛】本题主要考查了线面垂直的证明与锥体体积的求解方法等.需要根据题意找到合适的底面与高,或者利用割补法求解体积.属于中档题.20、(1);(2).【解析】试题分析:(1)由于为等差数列,根据已知条件求出的第一项和第三项求得数列的公差,即得数列的通项公式,移项可得数列的通项公式;(2)由(1)可知,通过分组求和根据等差数列和等比数列的前项和公式求得的前项和.试题解析:(1)设数列的公差为,∵,∴,∴,∴.(2)考点:等差数列的通项公式及数列求和.21、(1)(2)见解析【解析】试题分析:(1)利用和角公式及降次公式对f(x)进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论