版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省三亚市达标名校2023-2024学年数学高一下期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,(且),且数列是递增数列,数列是递减数列,又,则A. B. C. D.2.若,则函数的最小值是()A. B. C. D.3.若各项为正数的等差数列的前n项和为,且,则()A.9 B.14 C.7 D.184.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc25.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.6.在中,a、b分别为内角A、B的对边,如果,,,则()A. B. C. D.7.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数的部分图象大致是()A. B.C. D.8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A.35 B.20 C.18 D.99.化简:()A. B. C. D.10.某公司的班车在和三个时间点发车.小明在至之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过分钟的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,若直线与直线平行,则实数a的值为______.12.在中,角所对的边分别为,,则____13.若等比数列的各项均为正数,且,则等于__________.14.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.15.记为等差数列的前项和,若,则___________.16.若正四棱锥的侧棱长为,侧面与底面所成的角是45°,则该正四棱锥的体积是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,是第四象限角,求和的值.18.从含有两件正品和一件次品的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求:(1)一切可能的结果组成的基本事件空间.(2)取出的两件产品中恰有一件次品的概率19.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.20.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.21.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据已知条件可以推出,当为奇数时,,当为偶数时,,因此去绝对值可以得到,,利用累加法继而算出结果.【详解】,即,或,又,.数列为递增数列,数列为递减数列,当为奇数时,,当为偶数时,,..故选A.【点睛】本题主要考查了通过递推式求数列的通项公式,数列单调性的应用,以及并项求和法的应用。2、B【解析】
直接用均值不等式求最小值.【详解】当且仅当,即时,取等号.故选:B【点睛】本题考查利用均值不等式求函数最小值,属于基础题.3、B【解析】
根据等差中项定义及条件式,先求得.再由等差数列的求和公式,即可求得的值.【详解】数列为各项是正数的等差数列则由等差中项可知所以原式可化为,所以由等差数列求和公式可得故选:B【点睛】本题考查了等差中项的性质,等差数列前n项和的性质及应用,属于基础题.4、C【解析】
根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.5、A【解析】
由正弦定理可得,再结合余弦定理求解即可.【详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【点睛】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.6、A【解析】
先求出再利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:A.【点睛】本题注意考查正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.7、D【解析】
根据函数的性质以及特殊位置即可利用排除法选出正确答案.【详解】因为函数定义域为,关于原点对称,而,所以函数为奇函数,其图象关于原点对称,故排除A,C;又因为,故排除B.故选:D.【点睛】本题主要考查函数图象的识别,涉及余弦函数性质的应用,属于基础题.8、C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.9、A【解析】
.故选A.【点睛】考查向量数乘和加法的几何意义,向量加法的运算.10、A【解析】
根据题意得小明等车时间不超过分钟的总的时间段,再由比值求得.【详解】小明等车时间不超过分钟,则他需在至到,或至到,共计分钟,所以概率故选A.【点睛】本题考查几何概型,关键找到满足条件的时间段,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
由,解得,经过验证即可得出.【详解】由,解得.经过验证可得:满足直线与直线平行,则实数.故答案为:1.【点睛】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题.12、【解析】
利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【详解】由正弦定理可得:即:本题正确结果:【点睛】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.13、50【解析】由题意可得,=,填50.14、【解析】
用表示出,由对应相等即可得出.【详解】因为,所以解得得.【点睛】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.15、100【解析】
根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.16、【解析】
过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,设正四棱锥的底面长为,根据已知求出a=2,SO=1,再求该正四棱锥的体积.【详解】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,则为侧面与底面所成角的平面角,即,设正四棱锥的底面长为,则,所以,在中,∵∴,解得,∴∴棱锥的体积.故答案为【点睛】本题主要考查空间线面角的计算,考查棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,【解析】
利用诱导公式可求的值,根据是第四象限角可求的值,最后根据三角函数的基本关系式可求的值,根据诱导公式及倍角公式可求的值.【详解】,又是第四象限角,所以,所以,.【点睛】本题考查同角的三角函数的基本关系式、诱导公式以及二倍角公式,此题属于基础题.18、(1)和;(2)【解析】
(1)注意先后顺序以及是不放回的抽取;(2)在所有可能的事件中寻找符合要求的事件,然后利用古典概型概率计算公式求解即可.【详解】(1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即和其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品(2)用A表示“取出的两种中,恰好有一件次品”这一事件,则∴事件A由4个基本事件组成,因而,=.【点睛】本题考查挂古典概型的基本概率计算,难度较易.对于放回或不放回的问题,一定要注意区分其中的不同.19、(1)见证明;(2)【解析】
(1)先证得平面,由此证得,结合题意所给已知条件,证得平面,从而证得.(2)首先证得平面,由计算出三棱锥的体积.【详解】(1)证明:,∴,又,从而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【点睛】本小题主要考查线线垂直的证明,考查线面垂直的判定定理的运用,考查三棱锥体积的求法,属于中档题.20、(Ⅰ)(Ⅱ)().【解析】试题分析:(Ⅰ)运用两角和的正弦公式对f(x)化简整理,由周期公式求ω的值;(Ⅱ)根据函数y=sinx的单调递增区间对应求解即可.试题解析:(Ⅰ)因为,所以的最小正周期.依题意,,解得.(Ⅱ)由(Ⅰ)知.函数的单调递增区间为().由,得.所以的单调递增区间为().【考点】两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2.利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,不属于的,可先化至同一单调区间内.若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较,与1比较等)求解.21、(1)(2)【解析】
(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度商业地产项目地下车位使用权转让合同4篇
- 2025产业园项目幕墙二次深化设计、监理及验收服务合同2篇
- 2024年缝纫设备及相关技术咨询合同
- 2025年度新能源汽车买卖及售后服务合同4篇
- 2025年度智能车库门购销安装一体化服务合同4篇
- 2025年度智能安防监控系统设计与实施合同4篇
- 2024铁路信号设备更新改造工程合同文本3篇
- 中国医用呼吸机行业市场调查研究及投资战略咨询报告
- 中国家居百货行业市场调查研究及投资前景预测报告
- 2025年度个人房屋抵押贷款合同终止协议4篇
- C及C++程序设计课件
- 带状疱疹护理查房
- 公路路基路面现场测试随机选点记录
- 平衡计分卡-化战略为行动
- 国家自然科学基金(NSFC)申请书样本
- 幼儿教师干预幼儿同伴冲突的行为研究 论文
- 湖南省省级温室气体排放清单土地利用变化和林业部分
- 材料设备验收管理流程图
- 培训机构消防安全承诺书范文(通用5篇)
- (完整版)建筑业10项新技术(2017年最新版)
- 第8期监理月报(江苏版)
评论
0/150
提交评论