版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆康德卷2024年高一下数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知与的夹角为,,,则()A. B. C. D.2.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.3.在中,角A,B,C所对的边分别为a,b,c,,,,则等于()A. B. C. D.14.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.5.在中,已知,,若点在斜边上,,则的值为().A.6 B.12 C.24 D.486.已知数列是等比数列,若,且公比,则实数的取值范围是()A. B. C. D.7.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.58.执行如下图所示的程序框图,若输出的,则输入的的值为()A. B. C. D.9.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面10.设,,若是与的等比中项,则的最小值为()A. B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.对于下列数排成的数阵:它的第10行所有数的和为________12.若两个正实数满足,且不等式有解,则实数的取值范围是____________.13.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________14.设当时,函数取得最大值,则______.15.函数的值域为________.16.的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆A:,圆B:.(Ⅰ)求经过圆A与圆B的圆心的直线方程;(Ⅱ)已知直线l:,设圆心A关于直线l的对称点为,点C在直线l上,当的面积为14时,求点C的坐标.18.已知正项数列的前项和为,对任意,点都在函数的图象上.(1)求数列的通项公式;(2)若数列,求数列的前项和;(3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.19.已知圆,为坐标原点,动点在圆外,过点作圆的切线,设切点为.(1)若点运动到处,求此时切线的方程;(2)求满足的点的轨迹方程.20.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.21.如图,正方体棱长为,连接,,,,,,得到一个三棱锥,求:(1)三棱锥的表面积与正方体表面积的比值;(2)三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
将等式两边平方,利用平面向量数量积的运算律和定义得出关于的二次方程,解出即可.【详解】将等式两边平方得,,即,整理得,,解得,故选:A.【点睛】本题考查平面向量模的计算,在计算向量模的时候,一般将向量模的等式两边平方,利用平面向量数量积的定义和运算律进行计算,考查运算求解能力,属于中等题.2、B【解析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.3、D【解析】
根据题意,由正弦定理得,再把,,代入求解.【详解】由正弦定理,得,所以.故选:D【点睛】本题主要考查了正弦定理的应用,还考查了运算求解的能力,属于基础题.4、B【解析】
先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【点睛】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.5、C【解析】试题分析:因为,,,所以==+==,故选C.考点:1、平面向量的加减运算;2、平面向量的数量积运算.6、C【解析】
由可得,结合可得结果.【详解】,,,,,,故选C.【点睛】本题主要考查等比数列的通项公式,意在考查对基础知识的掌握与应用,属于基础题.7、D【解析】
由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.8、D【解析】由题意,当输入,则;;;,终止循环,则输出,所以,故选D.9、D【解析】
折叠过程中,仍有,根据平面平面可证得平面,从而得到正确的选项.【详解】在直角梯形中,因为为等腰直角三角形,故,所以,故,折起后仍然满足.因为平面平面,平面,平面平面,所以平面,因平面,所以.又因为,,所以平面,因平面,所以平面平面.【点睛】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.10、C【解析】
先由题意求出,再结合基本不等式,即可求出结果.【详解】因为是与的等比中项,所以,故,因为,,所以,当且仅当,即时,取等号;故选C【点睛】本题主要考查基本不等式的应用,熟记基本不等式即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【点睛】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.12、【解析】试题分析:因为不等式有解,所以,因为,且,所以,当且仅当,即时,等号是成立的,所以,所以,即,解得或.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.13、【解析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.14、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.15、【解析】
利用反三角函数的单调性即可求解.【详解】函数是定义在上的增函数,函数在区间上单调递增,,,函数的值域是.故答案为:【点睛】本题考查了反三角函数的单调性以及反三角函数值,属于基础题.16、【解析】
由反余弦可知,由此可计算出的值.【详解】.故答案为:.【点睛】本题考查正切值的计算,涉及反余弦的应用,求出反余弦值是关键,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)(Ⅱ)或【解析】
(Ⅰ)由已知求得,的坐标,再由直线方程的两点式得答案;(Ⅱ)求出的坐标,再求出以及所在直线方程,设,利用点到直线的距离公式求出到所在直线的距离,代入三角形面积公式解得值,进而可得的坐标.【详解】(Ⅰ)将圆:化为:,所以,圆:化为:,所以,所以经过圆与圆的圆心的直线方程为:,即.(Ⅱ)如图,设,由题意可得,解得,即,∴,所在直线方程为,即,设,则到所在直线的距离,由,解得或,∴点的坐标为或.【点睛】本题考查直线与圆位置关系的应用,考查点关于直线的对称点的求法,考查运算求解能力,属于中档题.18、(1);(2);(3).【解析】
(1)将点代入函数的解析式得到,令,由可求出的值,令,由得,两式相减得出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求出数列的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前项和;(3)利用分组求和法与裂项法求出数列的前项和,由题意得出,判断出数列各项的符号,得出数列的最大值为,利用函数的单调性得出该函数在区间上的最大值为,然后解不等式可得出实数的取值范围.【详解】(1)将点代入函数的解析式得到.当时,,即,解得;当时,由得,上述两式相减得,得,即.所以,数列是以为首项,以为公比的等比数列,因此,;(2),,因此,①,②由①②得,所以;(3).令为的前项和,则.因为,,,,当时,,令,,令,则,当时,,此时,数列为单调递减数列,,则,即,那么当时,数列为单调递减数列,此时,则.因此,数列的最大值为.又,函数单调递增,此时,函数的最大值为.因为对任意的,存在,.所以,解得,因此,实数的取值范围是.【点睛】本题考查利用等比数列前项和求数列通项,同时也考查了错位相减法求和以及数列不等式恒成立问题,解题时要充分利用数列的单调性求出数列的最大项或最小项的值,考查化归与转化思想的应用,属于难题.19、(1)或;(2).【解析】
解:把圆C的方程化为标准方程为(x+1)2+(y-2)2=4,∴圆心为C(-1,2),半径r=2.(1)当l的斜率不存在时,此时l的方程为x=1,C到l的距离d=2=r,满足条件.当l的斜率存在时,设斜率为k,得l的方程为y-3=k(x-1),即kx-y+3-k=0,则=2,解得k=.∴l的方程为y-3=(x-1),即3x+4y-15=0.综上,满足条件的切线l的方程为或.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,∵|PM|=|PO|.∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,∴点P的轨迹方程为.考点:直线与圆的位置关系;圆的切线方程;点的轨迹方程.20、(1);(2)存在.【解析】
(1)由题得到的距离为,即得,解方程即得解;(2)设,,存在点满足题意,即,把韦达定理代入方程化简即得解.【详解】(1)因为圆,所以圆心坐标为,半径为2,因为,所以到的距离为,由点到直线的距离公式可得:,解得.(2)设,,则得,因为,所以,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年人工智能技术研发合同协议书
- 2024服装加工合同简单版
- 2024正规的地区代理合同书
- 2024年广告制作与媒体投放合同
- 2024汽车配件购买合同
- 2024解除劳动合同说明书写
- 2024年居间业务买卖合同样本
- 2024年大型商场品牌入驻管理合同
- 2024年基因检测与精准医疗合同
- 2024专卖店装修合同协议书范文
- 安全培训总结及效果评价
- 系统集成项目管理工程师(基础知识、应用技术)合卷软件资格考试(中级)试题及解答参考(2025年)
- 广东省珠海市第十六中学2024-2025学年上学期期中质量监测九年级数学试题(无答案)
- 2024新信息科技七年级《第一单元 探寻互联网新世界》大单元整体教学设计2022课标
- 成语积累竞赛试题
- 2024焊接工艺规程
- 第六单元(整体教学设计)九年级语文上册大单元教学名师备课系列(统编版)
- DB1331T 080-2024 雄安新区零碳建筑技术标准
- 河北省衡水市枣强县2024-2025学年九年级上学期10月月考物理试题
- 时代乐章-第2课 科技之光(课件)2024-2025学年人教版(2024)初中美术七年级上册 -
- 基于区块链的车联网安全研究综述
评论
0/150
提交评论