版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆兵地2025届数学高一下期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A,B,C所对的边分别为a,b,c,若,,,则满足条件的的个数为()A.0 B.1 C.2 D.无数多个2.在区间上随机取一个数,使得的概率为()A. B. C. D.3.把函数的图象经过变化而得到的图象,这个变化是()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位4.如果且,那么的大小关系是()A. B.C. D.5.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若,,则线段的长为()A.3 B.3.5 C.4 D.4.56.若变量满足约束条件则的最小值等于()A. B. C. D.27.边长为的正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,则直线与平面所成角的正弦值为()A. B. C. D.8.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.9.已知在中,两直角边,,是内一点,且,设,则()A. B. C.3 D.10.在中,,则=()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则______.12.在平面直角坐标系中,点在第二象限,,,则向量的坐标为________.13.如图,已知六棱锥的底面是正六边形,平面,,给出下列结论:①;②直线平面;③平面平面;④异面直线与所成角为;⑤直线与平面所成角的余弦值为.其中正确的有_______(把所有正确的序号都填上)14.若,方程的解为______.15.已知函数那么的值为.16.数列满足,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与直线的交点为P,点Q是圆上的动点.(1)求点P的坐标;(2)求直线的斜率的取值范围.18.已知,与的夹角为.(1)若,求;(2)若与垂直,求.19.如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为,(1)按下列要求写出函数的关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式,(2)请你选用(1)中的一个函数关系式,求出的最大值.20.已知函数,.(1)求函数的单调减区间;(2)若存在,使等式成立,求实数的取值范围.21.已知圆(1)求圆关于直线对称的圆的标准方程;(2)过点的直线被圆截得的弦长为8,求直线的方程;(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
直接由正弦定理分析判断得解.【详解】由正弦定理得,所以C只有一解,所以三角形只有一解.故选:B【点睛】本题主要考查正弦定理的应用,意在考查学生对这些知识的理解掌握水平.2、A【解析】则,故概率为.3、B【解析】
试题分析:,与比较可知:只需将向右平移个单位即可考点:三角函数化简与平移4、B【解析】
取,故选B.5、A【解析】
设,可得,求得,在中,运用余弦定理,解方程可得所求值.【详解】设,可得,且,在中,可得,即为,化为,解得舍去),故选.【点睛】本题考查三角形的余弦定理,考查方程思想和运算能力,属于基础题.6、A【解析】
由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】解:由变量x,y满足约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1).故选A.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.7、D【解析】
在正方形中连接,交于点,根据正方形的性质,在折叠图中平面,得到,从而平面,面平面,则是在平面上的射影,找到直线与平面所所成的角.然后在直角三角中求解.【详解】如图所示:在正方形中连接,交于点,在折叠图,连接,因为,所以平面,所以,又因为,所以平面,又因为平面,所以平面,则是在平面上的射影,所以即为所求.因为故选:D【点睛】本题主要考查了折叠图问题,还考查了推理论证和空间想象的能力,属于中档题.8、D【解析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.9、A【解析】分析:建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D点坐标为(m,),由平面向量坐标表示,可求出λ和μ.详解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),因为∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则.故选A.点睛:本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.10、C【解析】
解:因为由正弦定理,所以又c<a所以,所以二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用二倍角公式,即可得到本题答案.【详解】因为,所以,得,由,所以.故答案为:【点睛】本题主要考查利用二倍角公式求值,属基础题.12、【解析】
由三角函数的定义求出点的坐标,然后求向量的坐标.【详解】设点,由三角函数的定义有,得,,得,所以,所以故答案为:【点睛】本题考查三角函数的定义的应用和已知点的坐标求向量坐标,属于基础题.13、①③④⑤【解析】
设出几何体的边长,根据正六边形的性质,线面垂直的判定定理,线面平行的判定定理,面面垂直的判定定理,异面直线所成角,线面角有关知识,对五个结论逐一分析,由此得出正确结论的序号.【详解】设正六边形长为,则.根据正六边形的几何性质可知,由平面得,所以平面,所以,故①正确.由于,而,所以直线平面不正确,故②错误.易证得,所以平面,所以平面平面,故③正确.由于,所以是异面直线与所成角,在中,,故,也即异面直线与所成角为,故④正确.连接,则,由①证明过程可知平面,所以平面,所以是所求线面角,在三角形中,,由余弦定理得,故⑤正确.综上所述,正确的序号为①③④⑤.【点睛】本小题主要考查线面垂直的判定,面面垂直的判定,考查线线角、线面角的求法,属于中档题.14、【解析】
运用指数方程的解法,结合指数函数的值域,可得所求解.【详解】由,即,因,解得,即.故答案:.【点睛】本题考查指数方程的解法,以及指数函数的值域,考查运算能力,属于基础题.15、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.16、2【解析】
利用递推公式求解即可.【详解】由题得.故答案为2【点睛】本题主要考查利用递推公式求数列中的项,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)联立方程求解即可;(2)设直线PQ的斜率为,得直线PQ的方程为,由题意,直线PQ与圆有公共点得求解即可【详解】(1)由得∴P的坐标为的坐标为.(2)由得∴圆心的坐标为,半径为设直线PQ的斜率为,则直线PQ的方程为由题意可知,直线PQ与圆有公共点即或∴直线PQ的斜率的取值范围为.【点睛】本题考查直线交点坐标,考查直线与圆的位置关系,考查运算能力,是基础题18、(1);(2)【解析】
(1)根据向量共线,对向量的夹角分类讨论,利用数量积公式即可完成求解;(2)根据向量垂直得到数量积为,再根据已知条件并借助数量积公式即可计算出的值.【详解】(1)∵,∴与的夹角为或,当时,,当时,,综上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夹角的范围是,∴【点睛】本题考查根据向量的平行、垂直求解向量的夹角以及向量数量积公式的运用,难度较易.注意共线向量的夹角为或.19、(Ⅰ),;(Ⅱ).【解析】试题分析:(1)①通过求出矩形的边长,求出面积的表达式;②利用三角函数的关系,求出矩形的邻边,求出面积的表达式;(2)利用(1)②的表达式,化为一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值.试题解析:(1)①因为,所以,所以,.②当时,,则,又,所以,所以,().(2)由②得,,当时,取得最大值为.考点:1.三角函数中的恒等变换;2.两角和与差的正弦函数.【方法点睛】本题主要考查的是函数解析式的求法,三角函数的最值的确定,三角函数公式的灵活运用,计算能力,属于中档题,此题是课本题目的延伸,如果(2)选择(1)①中的解析式,需要用到导数求解,麻烦,不是命题者的本意,因此正确的选择是选择(1)②中的解析式,化成一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值,此类题目选择正确的解析式是求解容易与否的关键.20、(1),.(2)【解析】
(1)利用降次公式和辅助角公式化简表达式,根据三角函数单调区间的求法,求得函数的单调减区间.(2)首先求得当时的值域.利用换元法令,将转化为,根据的范围,结合二次函数的性质,求得的取值范围.【详解】(1)由()解得().所以所求函数的单调减区间是,.(2)当时,,,即.令(),则关于的方程在上有解,即关于的方程在上有解.当时,.所以,则.因此所求实数的取值范围是.【点睛】本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查根据方程的根存在求参数的取值范围,考查二次函数的性质,考查化归与转化的数学思想方法,属于中档题.21、(1);(2)或;(3)【解析】
(1)设,根据圆心与关于直线对称,列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得,根据斜率分类讨论,求得直线的斜率,即可求解;(3)由直线,得直线过定点,根据时,弦长最短,即可求解.【详解】(1)由题意,圆的圆心,半径为,设,因为圆心与关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿拉尔经济技术开发区2025年度文化创意产业合作协议3篇
- 2025年金融行业实习生实习协议范本3篇
- 2025年度劳动合同终止及离职员工离职证明开具协议4篇
- 2025版兄妹联姻共同购房合作合同范本10篇
- 二零二五版数据中心租赁服务合同标准版3篇
- 二零二五版房产抵押担保合同:贷款房产抵押协议书3篇
- 郑州升达经贸管理学院《技术经济与项目管理》2023-2024学年第一学期期末试卷
- 郑州商贸旅游职业学院《树木病虫害防治-涂白》2023-2024学年第一学期期末试卷
- 郑州轻工业大学《形势与政策教育》2023-2024学年第一学期期末试卷
- 郑州旅游职业学院《水墨表现》2023-2024学年第一学期期末试卷
- 三级人工智能训练师(高级)职业技能等级认定考试题及答案
- 华为全屋智能试题
- 第三单元名著导读《经典常谈》知识清单 统编版语文八年级下册
- 第十七章-阿法芙·I·梅勒斯的转变理论
- 焊接机器人在汽车制造中应用案例分析报告
- 合成生物学在生物技术中的应用
- 中医门诊病历
- 广西华银铝业财务分析报告
- 无违法犯罪记录证明申请表(个人)
- 大学生劳动教育PPT完整全套教学课件
- 继电保护原理应用及配置课件
评论
0/150
提交评论