广东省珠海一中2025届高一数学第二学期期末经典模拟试题含解析_第1页
广东省珠海一中2025届高一数学第二学期期末经典模拟试题含解析_第2页
广东省珠海一中2025届高一数学第二学期期末经典模拟试题含解析_第3页
广东省珠海一中2025届高一数学第二学期期末经典模拟试题含解析_第4页
广东省珠海一中2025届高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省珠海一中2025届高一数学第二学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的值为()A. B. C. D.2.设,则()A. B. C. D.3.如图,在长方体中,M,N分别是棱BB1,B1C1的中点,若∠CMN=90°,则异面直线AD1和DM所成角为()A.30° B.45°C.60° D.90°4.已知,向量,则向量()A. B. C. D.5.已知,则()A. B. C. D.6.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用,表示,方差分别用,表示,则()A., B.,C., D.,7.对一切,恒成立,则实数的取值范围是()A. B.C. D.8.若两个球的半径之比为,则这两球的体积之比为()A. B. C. D.9.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为()A. B. C. D.10.若关于的方程有且只有两个不同的实数根,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,是第三象限角,则.12.已知当时,函数(且)取得最大值,则时,的值为__________.13.函数的定义域记作集合,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数,,,),记骰子向上的点数为,则事件“”的概率为________.14.方程的解集是____________.15.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.16.将无限循环小数化为分数,则所得最简分数为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前项的和为,,.(1)求数列的通项公式;(2)设,记数列的前项和为,求.18.求过三点的圆的方程,并求这个圆的半径和圆心坐标.19.已知函数满足.(1)若,对任意都有,求的取值范围;(2)是否存在实数,,使得不等式对一切实数恒成立?若存在,请求出,,使;若不存在,请说明理由.20.为了了解高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.(1)求第二小组的频率;(2)求样本容量;(3)若次数在110以上为达标,试估计全体高一学生的达标率为多少?21.已知是定义域为R的奇函数,当时,.Ⅰ求函数的单调递增区间;Ⅱ,函数零点的个数为,求函数的解析式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】sin(π+α)−3cos(2π−α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②联立解得:cos2α=.∴cos2α=2cos2α−1=.故选B.2、D【解析】

由得,再计算即可.【详解】,,所以故选D【点睛】本题考查了以数列的通项公式为载体求比值的问题,以及归纳推理的应用,属于基础题.3、D【解析】

建立空间直角坐标系,结合,求出的坐标,利用向量夹角公式可求.【详解】以为坐标原点,所在直线分别为轴,建立空间直角坐标系,如图,设,则,,,因为,所以,即有.因为,所以,即异面直线和所成角为.故选:D.【点睛】本题主要考查异面直线所成角的求解,异面直线所成角主要利用几何法和向量法,几何法侧重于把异面直线所成角平移到同一个三角形内,结合三角形知识求解;向量法侧重于构建坐标系,利用向量夹角公式求解.4、A【解析】

由向量减法法则计算.【详解】.故选A.【点睛】本题考查向量的减法法则,属于基础题.5、A【解析】分析:利用余弦的二倍角公式可得,进而利用同角三角基本关系,使其除以,转化成正切,然后把的值代入即可.详解:由题意得.∵∴故选A.点睛:本题主要考查了同角三角函数的基本关系和二倍角的余弦函数的公式.解题的关键是利用同角三角函数中的平方关系,完成了弦切的互化.6、D【解析】

分别计算出他们的平均数和方差,比较即得解.【详解】由题意可得,,,.故,.故选D【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.7、B【解析】

先求得的取值范围,根据恒成立问题的求解策略,将原不等式转化为,再解一元二次不等式求得的取值范围.【详解】解:对一切,恒成立,转化为:的最大值,又知,的最大值为;所以,解得或.故选B.【点睛】本小题主要考查恒成立问题的求解策略,考查三角函数求最值的方法,考查一元二次不等式的解法,考查化归与转化的数学思想方法,属于中档题.8、C【解析】

根据球的体积公式可知两球体积比为,进而得到结果.【详解】由球的体积公式知:两球的体积之比故选:【点睛】本题考查球的体积公式的应用,属于基础题.9、C【解析】

试题分析:从中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.考点:古典概型10、B【解析】

方程化为,可转化为半圆与直线有两个不同交点,作图后易得.【详解】由得由题意半圆与直线有两个不同交点,直线过定点,作出半圆与直线,如图,当直线过时,,,当直线与半圆相切(位置)时,由,解得.所以的取值范围是.故选:B.【点睛】本题考查方程根的个数问题,把问题转化为直线与半圆有两个交点后利用数形结合思想可以方便求解.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.12、3【解析】

先将函数的解析式利用降幂公式化为,再利用辅助角公式化为,其中,由题意可知与的关系,结合诱导公式以及求出的值.【详解】,其中,当时,函数取得最大值,则,,所以,,解得,故答案为.【点睛】本题考查三角函数最值,解题时首先应该利用降幂公式、和差角公式进行化简,再利用辅助角公式化简为的形式,本题中用到了与之间的关系,结合诱导公式进行求解,考查计算能力,属于中等题.13、【解析】要使函数有意义,则且,即且,即,随机地投掷一枚质地均匀的正方体骰子,记骰子向上的点数为,则,则事件“”的概率为.14、【解析】

由方程可得或,然后分别解出规定范围内的解即可.【详解】因为所以或由得或因为,所以由得因为,所以综上:解集是故答案为:【点睛】方程的等价转化为或,不要把遗漏了.15、【解析】

先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题16、【解析】

将设为,考虑即为,两式相减构造方程即可求解出的值,即可得到对应的最简分数.【详解】设,则,由可知,解得.故答案为:.【点睛】本题考查将无限循环小数化为最简分数,主要采用方程的思想去计算,难度较易.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)数列的通项公式为(2)【解析】试题分析:(1)建立方程组;(2)由(1)得:进而由裂项相消法求得.试题解析:(1)设等差数列的公差为,由题意知解得.所以数列的通项公式为(2)∴18、(x﹣4)2+(y+3)2=21,圆的半径为【解析】

设出圆的一般方程,把代入所设,得到关于的方程组,求解,即可求得圆的一般方程,化为标准方程,进一步求得圆心坐标与半径.【详解】设圆的方程为:x2+y2+Dx+Ey+F=0,则,解得D=﹣4,E=3,F=0,∴圆的方程为x2+y2﹣8x+6y=0,化为(x﹣4)2+(y+3)2=21,可得:圆心是(4,﹣3)、半径r=1.【点睛】本题主要考查圆的方程和性质,属于简单题.求圆的方程常见思路与方法有:①直接设出动点坐标,根据题意列出关于的方程即可;②根据几何意义直接找到圆心坐标和半径,写出方程;③待定系数法,可以根据题意设出圆的标准方程或一般式方程,再根据所给条件求出参数即可.19、(1)(2)存在,使不等式恒成立,详见解析.【解析】

(1)由知函数关于对称,求出后,通过构造函数求出;(2)利用不等式的两边夹定理,令,得,结合已知条件,解出;然后设存在实数,,命题成立,运用根的判别式建立关于实数的不等式组,解得.【详解】(1)由得此时,,构造函数,.即的取值范围是.(2)由对一切实数恒成立,得由得由得恒成立,也即,此时,.把,.代入,不等式也恒成立,所以,.【点睛】本题第(1)问,常用“反客为主法”,即把参数当成主元,而把看成参数;第(2)问,不等式对任意实数恒成立,常用赋值法切入问题.20、(1);(2);(3)%【解析】

(1)由于每个长方形的面积即为本组的频率,设第二小组的频率为4,则解得第二小组的频率为(2)设样本容量为,则(3)由(1)和直方图可知,次数在110以上的频率为由此估计全体高一学生的达标率为%21、Ⅰ见解析;(Ⅱ)【解析】

Ⅰ利用函数的奇偶性,利用对称性,写出函数的解析式;然后求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论