版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省庐巢六校联盟2025届高一下数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度2.已知,则的最小值为A.3 B.4 C.5 D.63.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.4.若{an}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9=()A.39 B.20 C.19.5 D.335.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=A. B. C.1 D.26.执行如图所示的程序框图,则输出的()A.3 B.4 C.5 D.67.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()345.156.1264.04187.51218.01A. B. C. D.8.如图,正方形中,分别是的中点,若则()A. B. C. D.9.设变量满足约束条件:,则的最小值()A. B. C. D.10.数列为等比数列,若,,数列的前项和为,则A. B. C.7 D.31二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.12.若、分别是方程的两个根,则______.13.已知扇形的半径为6,圆心角为,则该扇形的面积为_______.14.直线与间的距离为________.15.已知都是锐角,,则=_____16.记为等差数列的前项和,若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象过点,,.(1)求,的值;(2)若,且,求的值;(3)若在上恒成立,求实数的取值范围.18.已知函数f(x)=asin(x)(a>0)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数f(x)的最高点,Q为函数f(x)的图象与x轴的正半轴的交点,△OPQ为等腰直角三角形.(1)求a的值;(2)将△OPQ绕原点O按逆时针方向旋转角α(0<α),得到△OP′Q′,若点P′恰好落在曲线y(x>0)上(如图所示),试判断点Q′是否也落在曲线y(x>0),并说明理由.19.(1)设1<x<,求函数y=x(3﹣2x)的最大值;(2)解关于x的不等式x2-(a+1)x+a<1.20.设函数,其中,.(1)设,若函数的图象的一条对称轴为直线,求的值;(2)若将的图象向左平移个单位,或者向右平移个单位得到的图象都过坐标原点,求所有满足条件的和的值;(3)设,,已知函数在区间上的所有零点依次为,且,,求的值.21.如图,四棱锥中,底面为平行四边形,,,底面.(1)证明:;(2)设,求点到面的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.2、C【解析】
由,得,则,利用基本不等式,即可求解.【详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】
正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积4、D【解析】
根据等差数列的通项公式,纵向观察三个式子的项的脚标关系,可巧解.【详解】由等差数列得:所以同理:故选D.【点睛】本题考查等差数列通项公式,关键纵向观察出脚标的特殊关系更妙,属于中档题.5、B【解析】
画出不等式组表示的平面区域如图所示:当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以,解得,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.6、C【解析】
由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得
S=0,n=1
S=2,n=2
满足条件S<30,执行循环体,S=2+4=6,n=3
满足条件S<30,执行循环体,S=6+8=14,n=4
满足条件S<30,执行循环体,S=14+16=30,n=1
此时,不满足条件S<30,退出循环,输出n的值为1.
故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7、A【解析】
由表中的数据分析得:自变量基本上是等速增加,相应的函数值增加的速度越来越快,结合基本初等函数的单调性,即可得出答案.【详解】对于A:函数在是单调递增,且函数值增加速度越来越快,将自变量代入,相应的函数值,比较接近,符合题意,所以正确;对于B:函数值随着自变量增加是等速的,不合题意;对于C:函数值随着自变量的增加比线性函数还缓慢,不合题意;选项D:函数值随着自变量增加反而减少,不合题意.故选:A.【点睛】本题考查函数模型的选择和应用问题,解题的关键是掌握各种基本初等函数,如一次函数,二次函数,指数函数,对数函数的图像与性质,属于基础题.8、D【解析】试题分析:取向量作为一组基底,则有,所以又,所以,即.9、D【解析】
如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.10、A【解析】
先求等比数列通项公式,再根据等比数列求和公式求结果.【详解】数列为等比数列,,,,解得,,数列的前项和为,.故选.【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.12、【解析】
利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.13、【解析】
用弧度制表示出圆心角,然后根据扇形面积公式计算出扇形的面积.【详解】圆心角为对应的弧度为,所以扇形的面积为.故答案为:【点睛】本小题主要考查角度制和弧度制互化,考查扇形面积的计算,属于基础题.14、【解析】
根据两平行线间的距离,,代入相应的数据,整理计算得到答案.【详解】因为直线与互相平行,所以根据平行线间的距离公式,可以得到它们之间的距离,.【点睛】本题考查两平行线间的距离公式,属于简单题.15、【解析】
由已知求出,再由两角差的正弦公式计算.【详解】∵都是锐角,∴,又,∴,,∴.故答案为.【点睛】本题考查两角和与差的正弦公式.考查同角间的三角函数关系.解题关键是角的变换,即.这在三角函数恒等变换中很重要,即解题时要观察“已知角”和“未知角”的关系,根据这个关系选用相应的公式计算.16、100【解析】
根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】
(1)根据,,两点可确定,的值;(2)由(1)知,,求出,的值,然后根据,求出其值即可;(3)在,上恒成立,只需,求出在,上的最大值即可.【详解】(1)由得:,即,由知,,,由得:,即,即,由得,,所以;(2)由得:,即,由得:,(3)由得:,当时,,实数的取值范围为.【点睛】本题主要考查了三角函数的图象与性质,三角函数值的求法,以及在闭区间上的三角函数的值域问题的求法,意在考查学生整体思想以及转化与化归思想的应用能力.18、(1)2;(2)见解析.【解析】
(1)由已知利用周期公式可求最小正周期T=8,由题意可求Q坐标为(1,0).P坐标为(2,a),结合△OPQ为等腰直角三角形,即可得解a的值.(2)由(Ⅰ)知,|OP|=2,|OQ|=1,可求点P′,Q′的坐标,由点P′在曲线y(x>0)上,利用倍角公式,诱导公式可求cos2,又结合0<α,可求sin2α的值,由于1cosα•1sinα=8sin2α=23,即可证明点Q′不落在曲线y(x>0)上.【详解】(Ⅰ)因为函数f(x)=asin(x)(a>0)的最小正周期T8,所以函数f(x)的半周期为1,所以|OQ|=1.即有Q坐标为(1,0).又因为P为函数f(x)图象的最高点,所以点P坐标为(2,a),又因为△OPQ为等腰直角三角形,所以a2.(Ⅱ)点Q′不落在曲线y(x>0)上.理由如下:由(Ⅰ)知,|OP|=2,|OQ|=1,所以点P′,Q′的坐标分别为(2cos(),2sin()),(1cosα,1sinα),因为点P′在曲线y(x>0)上,所以3=8cos()sin()=1sin(2)=1cos2α,即cos2,又0<α,所以sin2α.又1cosα•1sinα=8sin2α=823.所以点Q′不落在曲线y(x>0)上.19、(1)(2)见解析【解析】
(1)由题意利用二次函数的性质,求得函数的最大值.(2)不等式即(x﹣1)(x﹣a)<1,分类讨论求得它的解集.【详解】(1)设1<x,∵函数y=x(3﹣2x)2,故当x时,函数取得最大值为.(2)关于x的不等式x2﹣(a+1)x+a<1,即(x﹣1)(x﹣a)<1.当a=1时,不等式即(x﹣1)2<1,不等式无解;当a>1时,不等式的解集为{x|1<x<a};当a<1时,不等式的解集为{x|a<x<1}.综上可得,当a=1时,不等式的解集为∅,当a>1时,不等式的解集为{x|1<x<a},当a<1时,不等式的解集为{x|a<x<1}.【点睛】本题主要考查二次函数的性质,求二次函数的最值,一元二次不等式的解集,体现了分类讨论的数学思想,属于基础题.20、(1);(2),;(3)【解析】
(1)根据对称轴对应三角函数最值以及计算的值;(2)根据条件列出等式求解和的值;(3)根据图象利用对称性分析待求式子的特点,然后求值.【详解】(1),因为是一条对称轴,对应最值;又因为,所以,所以,则;(2)由条件知:,可得,则,又因为,所以,则,故有:,当为奇数时,令,所以,当为偶数时,令,所以,当时,,又因为,所以;(3)分别作出(部分图像)与图象如下:因为,故共有个;记对称轴为,据图有:,,,,,则,令,则,又因为,所以,由于与仅在前半个周期内有交点,所以,则.【点睛】本题考查三角函数图象与性质的综合运用,难度较难.对于三角函数零点个数问题,可将其转化为函数图象的交点个数问题,通过数形结合去解决问题会更方便.21、(1)见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络贷款预约预约平台开发合同
- 网络营销培训课程开发合同
- 智能金融风控系统开发与服务合同
- 2024年商业合作延续协议样本
- 2024年短期资金借贷协议
- Roc-ASF-生命科学试剂-MCE
- Rhodojaponin-II-Standard-生命科学试剂-MCE
- 2024年房产居间代理销售协议模板
- 2024年高品质外墙保温施工服务协议
- 危险废弃物处理行业市场前景分析及发展趋势
- 期刊编辑的学术期刊编辑规范考核试卷
- T-CCSAS014-2022《化工企业承包商安全管理指南》
- 电梯安全总监和安全员的任命文件
- SL-T+62-2020水工建筑物水泥灌浆施工技术规范
- 2024年安徽省普通高中学业水平选择性考试 历史试卷
- 电子商务师职业技能等级证书培训方案
- JBT 14615-2024 内燃机 活塞运动组件 清洁度限值及测定方法(正式版)
- DL5009.2-2013电力建设安全工作规程第2部分:电力线路
- GA/T 2097-2023执法办案管理场所信息应用技术要求
- GB 20052-2024电力变压器能效限定值及能效等级
- 手术切口感染PDCA案例
评论
0/150
提交评论