版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02轴对称的性质(七大类型)【题型1轴对称】【题型2利用轴对称的性质求角度】【题型3利用轴对称的性质求线段长度】【题型4在格点中作轴对称图形】【题型5利用轴对称的性质解决折叠问题】【题型6利用轴对称的性质解决最短路径问题】【题型7轴对称图案的设计】【题型1轴对称】1.下列各选项中,两个三角形成轴对称的是()A. B. C. D.2.(2022秋•岳麓区校级期末)新年伊始,虎年来临,大家都开始用上了虎的图腾与吉祥物.以下小老虎的表情设计没有利用轴对称的是()A. B. C. D.3.两个图形关于某条直线对称,对称点一定在()A.这条直线的两旁 B.这条直线的同旁 C.这条直线上 D.这条直线两旁或这条直线上4.小梧要在一块矩形场地上晾晒传统工艺制作的蜡染布.如图所示,该矩形场地北侧安有间隔相等的7根栅栏,其中4根栅栏处与南侧的两角分别固定了高度相同的木杆a,b,c,d,e,f.这些木杆顶部的相同位置都有钻孔,绳子穿过木杆上的孔可以被固定.小梧想用绳子在南侧的两条木杆e,f和北侧的一条木杆上连出一个三角形,以晾晒蜡染布.小梧担心手中绳子的总长度不够,那么他在北侧木杆中应优先选择()A.a B.b C.c D.d【题型2利用轴对称的性质求角度】5.(2022秋•河北期中)如图,△ABC和△A'B'C'成轴对称,若∠A'=36°,∠C=24°,则∠B为()A.60° B.90° C.120° D.150°6.(2022•城关区二模)如图,Rt△ABC中,∠C=90°,∠A=38°,点D在AB上,且点D与点B关于直线l对称,则∠ACD的度数为()A.10° B.14° C.38° D.52°7.(2022春•港北区期末)如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠PAQ的大小是()A.70° B.55° C.40° D.30°8.如图,△ABC中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF,根据图中标示的角度,∠EAF的度数为()A.120° B.118° C.116° D.114°9.如图所示,将∠A沿着BC折叠到∠A所在平面内,点A的对应点是A',若∠A=54°,则∠1+∠2=()A.144° B.108° C.72° D.54°【题型3利用轴对称的性质求线段长度】10.如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.5 B.6 C.7 D.811.(2022春•和平县期末)已知:如图,P是∠AOB内的一点,P1,P2分别是点P关于OA、OB的对称点,P1P2交于点OA于点M,交OB于点N,若P1P2=5cm,则△PMN的周长是cm.12.如图,直线l1、l2交于点O,点P关于l1、l2的对称点分别为P1、P2.若OP=4,P1P2=7,则△P1OP2的周长是.13.如图,AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是三角形,△ABC的周长=cm.【题型4在格点中作轴对称图形】14.(2023•秦都区三模)如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1).(1)写出点A关于x轴对称的点的坐标;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1,点A、B、C的对应点分别为A1,B1,C1.15.(2023•鹿城区校级二模)如图,在8×8的方格纸中,P,Q为格点,△ABC的顶点均在格点上,请按要求画图.(1)在图1中画出格点△DEF,点A,B,C的对应点分别为D,E,F,使得△DEF与△ABC关于线段PQ成轴对称图形.(2)在图2中画出△ABC平移后的格点△GHK,点A,B,C的对应点分别为G,H,K,使得线段PQ平分△GHK的面积.16.如图,在8×8的方格纸中,P,Q为格点,△ABC的顶点均在格点上,请按要求画图.(1)画出格点△DEF,点A,B,C的对应点分别为D,E,F,使得△DEF与△ABC关于线段PQ成轴对称图形.(2)画出△ABC平移后的格点△GHK,点A,B,C的对应点分别为G,H,K,使得线段PQ平分△GHK的面积.17.如图,平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4)、B(﹣3,1)、C(﹣1,2).(1)在网格内作△A'B'C',使它与△ABC关于y轴对称,并写出△A'B'C'三个顶点的坐标.(2)求出四边形ABB′A′的面积.【题型5利用轴对称的性质解决折叠问题】18.如图,在△ABC中,∠A=30°,∠B=50°,将点A与点B分别沿MN和EF折叠,使点A、B与点C重合,则∠NCF的度数为()A.18° B.19° C.20° D.21°19.如图,在△ABC中,∠BAC=90°,M是边BC上一点,将△ABC沿AM折叠,点B恰好能与AC的中点D重合,若AB=6,则M点到AB的距离是()A.3 B.4 C.5 D.620.如图,在三角形纸片ABC中,AB=9cm,BC=8cm,AC=5cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△ADE的周长为()A.12cm B.9cm C.6cm D.5cm21.如图,要判断一张纸带的两边a,b是否相互平行,提供了如下两种折叠与测量方案:方案Ⅰ:沿图中虚线折叠并展开,测量发现∠1=∠2.方案Ⅱ:先沿AB折叠,展开后再沿CD折叠,测得AO=BO,CO=DO对于方案Ⅰ,Ⅱ,下列说法正确的是()A.Ⅰ可行,Ⅱ不可行 B.Ⅰ不可行,Ⅱ可行 C.Ⅰ、Ⅱ都不可行 D.Ⅰ,Ⅱ都可行22.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.4cm C.3cm D.5cm23.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在AC上,并且CF=2,点E为BC上的动点(点E不与点C重合),将△CEF沿直线EF翻折,使点C落在点P处,PE的长为,则边EF的长为()A. B.3 C. D.424.一张长方形纸条按如图所示折叠,EF是折痕,若∠EFB=35°,则:①∠GEF=35°;②∠EGB=70°;③∠AEG=110°;④∠EFC′=145°.以上结论正确的有()A.①② B.②③④ C.①②③ D.①②③④25.将一张长方形纸片按图2所示折叠后,再展开.如果∠1=66°,那么∠2的度数为()A.66° B.48° C.52° D.无法确定26.如图,把长方形纸条ABCD沿EF折叠,若∠EBF=α,则∠1的度数为()A. B.90°﹣α C.120°﹣α D.27.如图,将△ABC折叠,使点C落在BC边上,展开后得到折痕AD,则AD是△ABC的()A.高线 B.中线 C.垂线 D.角平分线28.如图,在四边形ABCD中,∠A=100°,∠C=70°.点M,N分别在AB,BC上,将四边形ABCD沿MN对折,得到△FMN,若MF∥AD,FN∥DC,则∠D=()A.35° B.70° C.95° D.125°29.如图,长方形纸片ABCD,P为边AD的中点,将纸片沿BP,CP折叠,使点A落在E处,点D落在F处,若∠1=40°,则∠BPC大小为()A.105° B.110° C.115° D.120°30.如图,长方形纸带ABCD,AD∥CB,将ABCD沿EF折叠,C、D两点分别与C'、D'对应,若∠1=2∠2,则∠AEF的度数为.31.如图,四边形ABCD中,∠A=120°,∠C=60°.若将四边形ABCD沿BD折叠后,顶点A恰好落在边BC上的点E处(E与C不重合),则∠CDE的度数为.32.如图,将一张白纸一角折过去,使角的顶点A落在A'处,BC为折痕,再将另一角∠EDB斜折过去,使BD边落在∠A'BC内部,折痕为BE,点D的对应点为D′,设∠ABC=35°,∠EBD=65°,则∠A'BD'的大小为°.【题型6利用轴对称的性质解决最短路径问题】33.如图,在△ABC纸片中,∠BAC=45°,BC=4,且S△ABC=5,P为BC上一点,将纸片沿AP剪开,并将△ABP、△ACP分别沿AB、AC向外翻折至△ABD、△ACE,连接DE,则△ADE面积的最小值为.34.如图,△ABC中,∠ACB=90°,BC=6,AC=8,AB=10,动点P在边AB上运动(不与端点重合),点P关于直线AC,BC对称的点分别为P1,P2.则在点P的运动过程中,线段P1P2的长的最小值是.35.如图,点A,B,C都在网格的格点上,每小方格是边长为1个单位长度的正方形.利用格点和直尺画图并填空:(1)画出格点△ABC关于直线MN轴对称的△A′B'C′;(2)画出△ABC中BC边上的高线AD;(3)若AB=5,点P是AB上一点则CP的最小值为.【题型7轴对称图案的设计】36.如图,阴影部分是由4个小正方形组成的“L”形,请用二种方法分别在如图的空白方格内涂黑一个小正方形,使阴影部分成为轴对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版建筑工程租赁机械安全责任合同3篇
- 2024年美食节摊位出租合同3篇
- 2024年网络金融服务合作合同
- 2025年度智能安防监控系统数据安全保护合同
- 2025年度网络安全风险评估与预警服务合同5篇
- 2025版老旧房屋翻新改造工程合同范本2篇
- 2025版酒店厨房设备更新改造与运营承包合同3篇
- 2024年度新型环保地板材料采购与施工监理合同范本2篇
- 2024年砌体抹灰分包工程合同案例
- 2024房屋委托出租协议书
- 北京环卫集团管理制度
- 《婚姻家庭纠纷调解》课件
- 远程银行行业背景分析
- 如何提高孩子的注意力和专注力
- 2022-2023学年海南省海口市重点中学八年级(上)期末物理试卷(含解析)
- 2019-2020学年四川省南充市九年级(上)期末数学试卷
- 胆石症教案完
- 护士个人优点和缺点(六篇)
- DIN-EN-ISO-2409-CN国际标准文档
- 教师管理培训系统的设计与开发
- 公务员面试辅导(共75张PPT)
评论
0/150
提交评论