四川省重点中学2023-2024学年高一数学第二学期期末联考试题含解析_第1页
四川省重点中学2023-2024学年高一数学第二学期期末联考试题含解析_第2页
四川省重点中学2023-2024学年高一数学第二学期期末联考试题含解析_第3页
四川省重点中学2023-2024学年高一数学第二学期期末联考试题含解析_第4页
四川省重点中学2023-2024学年高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省重点中学2023-2024学年高一数学第二学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B. C. D.2.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或93.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥的体积为定值D.4.不等式所表示的平面区域是()A. B.C. D.5.已知是奇函数,且.若,则()A.1 B.2 C.3 D.46.圆关于原点对称的圆的方程为()A. B.C. D.7.已知在中,内角的对边分别为,若,则等于()A. B. C. D.8.从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于()A.57 B.59 C.29.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.10.已知,且,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.从甲、乙、丙、丁四个学生中任选两人到一个单位实习,余下的两人到另一单位实习,则甲、乙两人不在同一单位实习的概率为________.12.某工厂甲、乙、丙三个车间生产了同种产品,数量分别为90件,60件,30件,为了解它们的产品质量是否存在显著差异,采用层抽样方法抽取了一个容量为的样本进行调查,其中从乙车间的产品中抽取了2件,应从甲车间的产品中抽取______件.13.已知为钝角,且,则__________.14.函数的值域是________15.已知向量为单位向量,向量,且,则向量的夹角为__________.16.已知向量与的夹角为,且,;则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若不等式的解集为.(1)求证:;(2)求不等式的解集.18.已知.(1)若对任意的,不等式上恒成立,求实数的取值范围;(2)解关于的不等式.19.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.20.已知的顶点都在单位圆上,角的对边分别为,且.(1)求的值;(2)若,求的面积.21.等差数列中,,.(1)求数列的通项公式;(2)设,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A2、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。3、D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。选D。4、D【解析】

根据二元一次不等式组表示平面区域进行判断即可.【详解】不等式组等价为或则对应的平面区域为D,

故选:D.【点睛】本题主要考查二元一次不等式组表示平区域,比较基础.5、C【解析】

根据题意,由奇函数的性质可得,变形可得:,结合题意计算可得的值,进而计算可得答案.【详解】根据题意,是奇函数,则,变形可得:,则有,即,又由,则,,故选:.【点睛】本题考查函数奇偶性的性质以及应用,涉及诱导公式的应用,属于基础题.6、D【解析】

根据已知圆的方程可得其圆心,进而可求得其关于原点对称点,利用圆的标准方程即可求解.【详解】由圆,则圆心为,半径,圆心为关于原点对称点为,所以圆关于原点对称的圆的方程为.故选:D【点睛】本题考查了根据圆心与半径求圆的标准方程,属于基础题.7、A【解析】

由题意变形,运用余弦定理,可得cosB,再由同角的平方关系,可得所求值.【详解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,则cosB,可得B<π,即有sinB.故选A.【点睛】本题考查余弦定理的运用,考查同角的平方关系,以及运算能力,属于中档题.8、C【解析】试题分析:设事件为“从1,2,3,…,9这9个数中5个数的中位数是5”,则基本事件总数为种,事件所包含的基本事件的总数为:,所以由古典概型的计算公式知,,故应选.考点:1.古典概型;9、D【解析】

设,对比得到答案.【详解】设,则故答案为D【点睛】本题考查了向量的计算,意在考查学生的计算能力.10、C【解析】

根据同角三角函数的基本关系及两角和差的正弦公式计算可得.【详解】解:因为,.因为,所以.因为,,所以.所以.故选:【点睛】本题考查同角三角函数的基本关系,两角和差的正弦公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

求得从甲、乙、丙、丁四个学生中任选两人的总数和甲、乙两人不在同一单位实习的方法数,由古典概型的概率计算公式可得所求值.【详解】解:从甲、乙、丙、丁四个学生中任选两人的方法数为种,甲、乙两人不在同一单位实习的方法数为种,则甲、乙两人不在同一单位实习的概率为.故答案为:.【点睛】本题主要考查古典概型的概率计算公式,考查运算能力,属于基础题.12、.【解析】

根据分层抽样中样本容量关系,即可求得从甲车间的产品中抽取数量.【详解】根据分层抽样为等概率抽样,所以乙车间每个样本被抽中的概率等于甲车间每个样本被抽中的概率设从甲车间抽取样本为件所以,解得所以从甲车间抽取样本件故答案为:【点睛】本题考查了分层抽样的特征及样本数量的求法,属于基础题.13、.【解析】

利用同角三角函数的基本关系即可求解.【详解】由为钝角,且,所以,所以.故答案为:【点睛】本题考查了同角三角函数的基本关系,同时考查了象限角的三角函数的符号,属于基础题.14、【解析】

利用函数的单调性,结合函数的定义域求解即可.【详解】因为函数的定义域是,,函数是增函数,所以函数的最小值为:,最大值为:.所以函数的值域为:,.故答案为,.【点睛】本题考查函数的单调性以及函数的值域的求法,考查计算能力.15、【解析】因为,所以,所以,所以,则.16、【解析】

已知向量与的夹角为,则,已知模长和夹角代入式子即可得到结果为故答案为1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】

(1)由已知可得是的两根,利用韦达定理,化简可得结论;(2)结合(1)原不等式可化为,利用一元二次不等式的解法可得结果.【详解】(1)∵不等式的解集为∴是的两根,且∴∴,所以;(2)因为,,所以,即,又即,解集为【点睛】本题考查了求一元二次不等式的解法,是基础题目.若,则的解集是;的解集是.18、(1);(2)见解析.【解析】

(1)参变分离后可得在上恒成立,利用基本不等式可求的最小值,从而得到参数的取值范围.(2)原不等式可化为,就对应方程的两根的大小关系分类讨论可得不等式的解集.【详解】(1)对任意的,恒成立即恒成立.因为当时,(当且仅当时等号成立),所以即.(2)不等式,即,①当即时,;②当即时,;③当即时,.综上:当时,不等式解集为;当时,不等式解集为;当时,不等式解集为.【点睛】含参数的一元二次不等式,其一般的解法是:先考虑对应的二次函数的开口方向,再考虑其判别式的符号,其次在判别式大于零的条件下比较两根的大小,最后根据不等号的方向和开口方向得到不等式的解.一元二次不等式的恒成立问题,参变分离后可以转化为函数的最值进行讨论,后者可利用基本不等式来求.19、(1)(2)不存在(3)1【解析】

(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分20、(1);(2)【解析】分析:(1)由正弦定理,两角和的正弦函数公式化简已知可得,又,即可求得的值;(2)由同角三角函数基本关系式可求的值,由于的顶点都在单位圆上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面积公式即可得解.详解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论