版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年黑龙江省哈尔滨师大附中数学高一下期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向正方形ABCD内任投一点P,则“的面积大于正方形ABCD面积的”的概率是()A. B. C. D.2.下列四个函数中,与函数完全相同的是()A. B.C. D.3.已知,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为A.5 B.10 C.4 D.205.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与原正方体体积的比值为()A. B. C. D.6.已知函数f(x)=2x+log2x,且实数a>b>c>0,满足A.x0<a B.x0>a7.已知向量,,若,则()A. B. C. D.8.如图,若长方体的六个面中存在三个面的面积分别是2,3,6,则该长方体中线段的长是()A. B. C.28 D.9.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.2510.圆x-12+y-3A.1 B.2 C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.数列的前项和为,,,则________.12.设,为单位向量,其中,,且在方向上的射影数量为2,则与的夹角是___.13.一个扇形的半径是,弧长是,则圆心角的弧度数为________.14.终边在轴上的角的集合是_____________________.15.方程在区间上的解为___________.16.如图,矩形中,,,是的中点,将沿折起,使折起后平面平面,则异面直线和所成的角的余弦值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,是公差为的等差数列,是公比为的等比数列.且,,,.(1)分别求数列、的通项公式;(2)已知数列满足:,求数列的通项公式.18.已知向量,(1)若,求;(2)若,求.19.东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间与乘客等候人数之间的关系,选取一天中的六个不同的时段进行抽样调查,经过统计得到如下数据:间隔时间(分钟)81012141618等候人数(人)161923262933调查小组先从这6组数据中选取其中的4组数据求得线性回归方程,再用剩下的2组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.参考公式:用最小二乘法求线性回归方程的系数公式:,(1)若选取的是前4组数据,求关于的线性回归方程;(2)判断(1)中的方程是否是“理想回归方程”:(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟?20.已知函数.(1)求函数的最小正周期及单调递增区间:(2)求函数在区间上的最大值及取最大值时的集合.21.已知数列满足.(1)若,证明:数列是等比数列,求的通项公式;(2)求的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由题意,求出满足题意的点所在区域的面积,利用面积比求概率.【详解】由题意,设正方形的边长为1,则正方形的面积为1,要使的面积大于正方形面积的,需要到的距离大于,即点所在区域面积为,由几何概型得,的面积大于正方形面积的的概率为.故选:C.【点睛】本题考查几何概型的概率求法,解题的关键是明确概率模型,属于基础题.2、C【解析】
先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与相同的函数.【详解】的定义域为,A.,因为,所以,定义域为或,与定义域不相同;B.,因为,所以,所以定义域为,与定义域不相同;C.,因为,所以定义域为,又因为,所以与相同;D.,因为,所以,定义域为,与定义域不相同.故选:C.【点睛】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.3、B【解析】∵,∴,,,∴,∴点在第二象限,故选B.点睛:本题主要考查了由三角函数值的符号判断角的终边位置,属于基础题;三角函数值符号记忆口诀记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.4、B【解析】
直接利用分层抽样按照比例抽取得到答案.【详解】设应抽取的女生人数为,则,解得.故答案选B【点睛】本题考查了分层抽样,属于简单题.5、C【解析】
根据三视图还原出几何体,得到是在正方体中,截去四面体,利用体积公式,求出其体积,然后得到答案.【详解】根据三视图还原出几何体,如图所述,得到是在正方体中,截去四面体设正方体的棱长为,则,故剩余几何体的体积为,所以截去部分的体积与剩余部分的体积的比值为.故选:C.【点睛】本题考查了几何体的三视图求几何体的体积;关键是正确还有几何体,利用体积公式解答,属于简单题.6、D【解析】
由函数的单调性可得:当x0<c时,函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)【详解】因为函数f(x)=2则函数y=f(x)在(0,+∞)为增函数,又实数a>b>c>0,满足f(a)f(b)f(c)<0,则f(a),f(b),f(c)为负数的个数为奇数,对于选项A,B,C选项可能成立,对于选项D,当x0函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)<0,故选项D不可能成立,故选:D.【点睛】本题考查了函数的单调性,属于中档题.7、D【解析】
由共线向量的坐标表示可得出关于实数的方程,解出即可.【详解】向量,,且,,解得.故选:D.【点睛】本题考查利用共线向量的坐标表示求参数的值,解题时要熟悉共线向量坐标之间的关系,考查计算能力,属于基础题.8、A【解析】
由长方体的三个面对面积先求出同一点出发的三条棱长,即可求出结果.【详解】设长方体从一个顶点出发的三条棱的长分别为,且,,,则,,,所以长方体中线段的长等于.【点睛】本题主要考查简单几何体的结构特征,属于基础题型.9、C【解析】
将|a+b10、C【解析】
先计算圆心到y轴的距离,再利用勾股定理得到弦长.【详解】x-12+y-32=2圆心到y轴的距离d=1弦长l=2r故答案选C【点睛】本题考查了圆的弦长公式,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、18【解析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.12、【解析】
利用在方向上的射影数量为2可得:,即可整理得:,问题得解.【详解】因为在方向上的射影数量为2,所以,整理得:又,为单位向量,所以.设与的夹角,则所以与的夹角是【点睛】本题主要考查了向量射影的概念及方程思想,还考查了平面向量夹角公式应用,考查转化能力及计算能力,属于中档题.13、2【解析】
直接根据弧长公式,可得.【详解】因为,所以,解得【点睛】本题主要考查弧长公式的应用.14、【解析】
由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.15、【解析】试题分析:化简得:,所以,解得或(舍去),又,所以.【考点】二倍角公式及三角函数求值【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解.本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.16、【解析】
取中点为,中点为,连接,则异面直线和所成角为.在中,利用边长关系得到余弦值.【详解】由题意,取中点,连接,则,可得直线和所成角的平面角为,(如图)过作垂直于,平面⊥平面,,平面,,且,结合平面图形可得:,,,又=,∴=,∴在中,=,∴△DFC是直角三角形且,可得.【点睛】本题考查了异面直线的夹角,意在考查学生的计算能力和空间想象能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据题意分别列出关于、的方程,求出这两个量,然后分别求出数列、的首项,再利用等差数列和等比数列的通项公式可计算出数列、的通项公式;(2)令可得出的值,再令,由得出,两式相减可求出,于此得出数列的通项公式.【详解】(1)由题意得,,,解得,且,,,,,且,整理得,解得,,,由等比数列的通项公式可得;(2)由题意可知,对任意的,.当时,,;当时,由,可得,上述两式相减得,即,.不适合上式,因此,.【点睛】本题考查等差数列、等比数列通项公式的求解,以及利用作差法求数列通项,解题时要结合数列递推式的结构选择合适的方法求解,考查运算求解能力,属于中等题.18、(1)3;(2)或【解析】
(1)由,得,又由,即可得到本题答案;(2)由,得,即,由此即可得到本题答案.【详解】解:(1)由,得,即,(2)由,得,即,又,解得或.【点睛】本题主要考查平面向量与三角函数求值的综合问题,齐次式法求值是解决此类问题的常用方法.19、(1)(2)是“理想回归方程”(3)估计间隔时间最多可以设置为21分钟【解析】
(1)根据所给公式计算可得回归方程;(2)由理想回归方程的定义验证;(3)直接解不等式即可.【详解】(1),(2)当时,当时,,所以判断(1)中的方程是“理想回归方程”(3)由,得估计间隔时间最多可以设置为21分钟【点睛】本题考查回归直线方程,解题时直接根据所给公式计算,考查了学生的运算求解能力.20、(1),单调递增区间为;(2)最大值为,取最大值时,的集合为.【解析】
(1)对进行化简转换为正弦函数,可得其最小正周期和递增区间;(2)根据(1)的结果,可得正弦函数的最大值和此时的的集合.【详解】解:(1)∴.增区间为:即单调递增区间为(2)当时,的最大值为,此时,∴取最大值时,的集合为.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广场景观施工合同
- 【初中生物】从种到界-2024-2025学年七年级生物上册同步教学课件(人教版2024)
- 2024租地合同协议书范本农村租地协议书范本
- 2024年度「新能源领域研究开发」合同
- 2024年冷库建造施工合同模板
- 2024年度销售合同:医疗设备供应
- 2024年店铺装修合同范本
- 2024年度」品牌代言协议明星效应助力品牌
- 2024年度智能制造生产线改造合同
- 认识梯形课件教学课件
- 公安机关大型活动安全管理
- 上下班安全交通培训
- 股骨头置换术后护理查房
- 《招商招租方案》课件
- 第六单元中国特色社会主义生态文明建设及结语练习-2023-2024学年中职高教版(2023)中国特色社会主义
- 结算周期与付款方式
- 【S钢材民营企业经营管理探究17000字(论文)】
- 林木种质资源调查表(新表)
- 蔬菜出口基地备案管理课件
- 子宫异常出血的护理
- 高考英语单词3500记忆短文40篇
评论
0/150
提交评论