2023-2024学年湖北省武汉市江夏一中数学高一下期末调研模拟试题含解析_第1页
2023-2024学年湖北省武汉市江夏一中数学高一下期末调研模拟试题含解析_第2页
2023-2024学年湖北省武汉市江夏一中数学高一下期末调研模拟试题含解析_第3页
2023-2024学年湖北省武汉市江夏一中数学高一下期末调研模拟试题含解析_第4页
2023-2024学年湖北省武汉市江夏一中数学高一下期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省武汉市江夏一中数学高一下期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,给出下列四个结论:①函数满足;②函数图象关于直线对称;③函数满足;④函数在是单调增函数;其中正确结论的个数是()A. B. C. D.2.已知角的终边经过点,则的值是()A. B. C. D.3.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.124.函数f(x)=sinA.1 B.2 C.3 D.25.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.106.已知圆x2+y2+2x-6y+5a=0关于直线y=x+b成轴对称图形,则A.(0,8) B.(-∞,8) C.(-∞,16)7.已知一组数1,1,2,3,5,8,,21,34,55,按这组数的规律,则应为()A.11 B.12 C.13 D.148.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.9.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.10.已知点,点,点在圆上,则使得为直角三角形的点的个数为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线y=x+m与曲线x=恰有一个公共点,则实数m的取值范围是______.12.设数列的通项公式,则数列的前20项和为____________.13.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.14.在中,,则_____________15.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______16.若当时,不等式恒成立,则实数a的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.18.已知函数的最小正周期为.(1)求的值和函数的值域;(2)求函数的单调递增区间及其图像的对称轴方程.19.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.20.已知圆的方程为,直线l的方程为,点P在直线l上,过点P作圆的切线PA,PB,切点为A,B.(1)若,求点P的坐标;(2)求证:经过A,P,三点的圆必经过异于的某个定点,并求该定点的坐标.21.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

求出余弦函数的周期,对称轴,单调性,逐个判断选项的正误即可.【详解】函数,函数的周期为,所以①正确;时,,函数取得最大值,所以函数图象关于直线对称,②正确;函数满足即.所以③正确;因为时,,函数取得最大值,所以函数在上不是单调增函数,不正确;故选.【点睛】本题主要考查余弦函数的单调性、周期性以及对称轴等性质的应用.2、D【解析】

首先计算出,根据三角函数定义可求得正弦值和余弦值,从而得到结果.【详解】由三角函数定义知:,,则:本题正确选项:【点睛】本题考查任意角三角函数的求解问题,属于基础题.3、C【解析】

根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【点睛】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】

对sin(x+π3【详解】∵f(x)=sin∴f(x)【点睛】考查三角恒等变换、辅助角公式及余弦函数的最值.5、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.6、D【解析】

根据圆关于直线成轴对称图形得b=4,根据二元二次方程表示圆得a<2,再根据指数函数的单调性得4a【详解】解:∵圆x2+y∴圆心(-1,3)在直线∴3=-1+b,解得b=4又圆的半径r=4+36-20a2>0b故选:D.【点睛】本题考查了直线与圆的位置关系,属中档题.7、C【解析】

易得从第三项开始数列的每项都为前两项之和,再求解即可.【详解】易得从第三项开始数列的每项都为前两项之和,故.故选:C【点睛】该数列为“斐波那契数列”,从第三项开始数列的每项都为前两项之和,属于基础题.8、D【解析】

分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【详解】由题意,,,则.故选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.9、A【解析】

根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.10、D【解析】

分、、是直角三种情况讨论,求出点的轨迹,将问题转化为点的轨迹图形与圆的公共点个数问题,即可得出正确选项.【详解】①若为直角,则,设点,,,则,即,此时,点的轨迹是以点为圆心,以为半径的圆,圆与圆的圆心距为,,则圆与圆的相交,两圆的公共点个数为;②若为直角,由于直线的斜率为,则直线的斜率为,直线的方程为,即,圆的圆心到直线的距离为,则直线与圆相交,直线与圆有个公共点;③若为直角,则直线的方程为,圆的圆心到直线的距离为,直线与圆相离,直线与圆没有公共点.综上所述,使得为直角三角形的点的个数为.故选:D.【点睛】本题考查符合条件的直角三角形的顶点个数,解题的关键在于将问题转化为直线与圆、圆与圆的公共点个数之和的问题,同时也考查了轨迹方程的求解,考查化归与转化思想以及分类讨论思想的应用,属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、{m|-1<m≤1或m=-}【解析】

由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m的取值范围.【详解】由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m经过点(0,1)时,m=1.当直线y=x+m经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m的取值范围是:﹣1<m≤1或m=﹣.故答案为:{m|-1<m≤1或m=-}.【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.12、【解析】

对去绝对值,得,再求得的前项和,代入=20即可求解【详解】由题的前n项和为的前20项和,代入可得.故答案为:260【点睛】本题考查等差数列的前项和,去绝对值是关键,考查计算能力,是基础题13、【解析】

试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.14、【解析】

先由正弦定理得到,再由余弦定理求得的值.【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题.15、【解析】

首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【点睛】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.16、【解析】

用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见证明;(Ⅱ)【解析】

(Ⅰ)折叠前,AC⊥DE;,从而折叠后,DE⊥PF,DE⊥CF,由此能证明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.说明四边形DEBC为平行四边形.可得CB∥DE.由此能证明平面PBC⊥平面PCF.(Ⅱ)由题意根据勾股定理运算得到,又由(Ⅰ)的结论得到,可得平面,再利用等体积转化有,计算结果.【详解】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,,又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.【点睛】本题考查线面垂直、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查了三棱锥体积的求法,运用了转化思想,是中档题.18、(1),值域为;(2)单调递增区间为,对称轴方程为.【解析】

(1)利用二倍角公式降幂,然后化为的形式,由周期公式求出,同时求得值域;(2)直接利用复合函数的单调性求得增区间,再由求得对称轴方程.【详解】(1),由,得,,则函数的值域为;(2)由,解得,函数的单调递增区间为,令,解得,函数的对称轴方程为.【点睛】本题考查了二倍角公式以及三角函数的图像与性质,掌握正弦函数的性质才是解题的关键,考查了基本知识,属于基础题.19、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)利用正弦定理和三角恒等变换的公式化简即得;(Ⅱ)设,则,,由余弦定理得关于x的方程,解方程即得解.【详解】(Ⅰ)由题意,∴,∴,则,∵,∴,∴;(Ⅱ)由(Ⅰ)知,又∵,∴,设,则,,在中,由余弦定理得:,即,解得,即.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角恒等变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)和;(2)和【解析】

(1)设,连接,分析易得,即有,解得的值,即可得到答案.(2)根据题意,分析可得:过A,P,三点的圆为以为直径的圆,设的坐标为,用表示过A,P,三点的圆为,结合直线与圆的位置关系,分析可得答案.【详解】(1)根据题意,点P在直线l上,设,连接,因为圆的方程为,所以圆心,半径,因为过点P作圆的切线PA,PB,切点为A,B;则有,且,易得,又由,即,则,即有,解得或,即的坐标为和.(2)根据题意,是圆的切线,则,则过A,P,三点的圆为以为直径的圆,设的坐标为,,则以为直径的圆为,变形可得:,即,则有,解得或,则当和,时,恒成立,则经过A,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论