版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山一中、珠海一中、金山中学2024年高一下数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列中,,则数列前9项的和等于()A.66 B.99 C.144 D.2972.若,则下列结论成立的是()A. B.C.的最小值为2 D.3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知圆,过点作圆的最长弦和最短弦,则直线,的斜率之和为A. B. C.1 D.5.某学校高一、高二、高三教师人数分别为100、120、80,为了解他们在“学习强国”平台上的学习情况,现用分层抽样的方法抽取容量为45的样本,则抽取高一教师的人数为()A.12 B.15 C.18 D.306.已知角满足,,且,,则的值为()A. B. C. D.7.如果且,那么的大小关系是()A. B.C. D.8.已知直线的倾斜角为,则()A. B. C. D.9.若圆与圆相切,则实数()A.9 B.-11 C.-11或-9 D.9或-1110.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.182二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④12.若、分别是方程的两个根,则______.13.若数列{an}满足a1=2,a14.已知,若方程的解集为,则__________.15.在等比数列中,,,则________.16.设,若用含的形式表示,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前项和为,且成等差数列,(1)求数列的公比;(2)若,求数列的通项公式.18.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.19.已知向量,,,.(1)若,且,求x的值;(2)对于,,定义.解不等式;(3)若存在,使得,求k的取值范围.20.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.21.如图,在三棱柱中,侧棱垂直于底面,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据等差数列性质,结合条件可得,进而求得.再根据等差数列前n项和公式表示出,即可得解.【详解】等差数列中,,则,解得,因而,由等差数列前n项和公式可得,故选:B.【点睛】本题考查了等差数列性质的应用,等差数列前n项和公式的用法,属于基础题.2、D【解析】
由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【点睛】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.3、A【解析】
根据和之间能否推出的关系,得到答案.【详解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要条件,故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.4、D【解析】
根据圆的几何性质可得最长弦是直径,最短弦和直径垂直,故可计算斜率,并求和.【详解】由题意得,直线经过点和圆的圆心弦长最长,则直线的斜率为,由题意可得直线与直线互相垂直时弦长最短,则直线的斜率为,故直线,的斜率之和为.【点睛】本题考查了两直线垂直的斜率关系,以及圆内部的几何性质,属于简单题型.5、B【解析】
由分层抽样方法即按比例抽样,运算即可得解.【详解】解:由分层抽样方法可得抽取高一教师的人数为,故选:B.【点睛】本题考查了分层抽样方法,属基础题.6、D【解析】
根据角度范围先计算和,再通过展开得到答案.【详解】,,故答案选D【点睛】本题考查了三角函数恒等变换,将是解题的关键.7、B【解析】
取,故选B.8、B【解析】
根据直线斜率与倾斜角的关系求解即可.【详解】因为直线的倾斜角为,故直线斜率.故选:B【点睛】本题主要考查了直线的倾斜角与斜率的关系,属于基础题.9、D【解析】
分别讨论两圆内切或外切,圆心距和半径之间的关系即可得出结果.【详解】圆的圆心坐标为,半径;圆的圆心坐标为,半径,讨论:当圆与圆外切时,,所以;当圆与圆内切时,,所以,综上,或.【点睛】本题主要考查圆与圆位置关系,由两圆相切求参数的值,属于基础题型.10、B【解析】
由,可得,可得的值.【详解】解:已知等差数列中,可得,即:,,故选B【点睛】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】
根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【点睛】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.12、【解析】
利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.13、2×【解析】
判断数列是等比数列,然后求出通项公式.【详解】数列{an}中,a可得数列是等比数列,等比为3,an故答案为:2×3【点睛】本题考查等比数列的判断以及通项公式的求法,考查计算能力.14、【解析】
将利用辅助角公式化简,可得出的值.【详解】,其中,,因此,,故答案为.【点睛】本题考查利用辅助角公式化简计算,化简时要熟悉辅助角变形的基本步骤,考查运算求解能力,属于中等题.15、【解析】
根据等比数列中,,得到公比,再写出和,从而得到.【详解】因为为等比数列,,,所以,所以,,所以.故答案为:.【点睛】本题考查等比数列通项公式中的基本量计算,属于简单题.16、【解析】
两边取以5为底的对数,可得,化简可得,根据对数运算即可求出结果.【详解】因为所以两边取以5为底的对数,可得,即,所以,,故填.【点睛】本题主要考查了对数的运算法则,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由等差数列的中项性质,以及等比数列的求和公式,解方程可得;(2)由等比数列的通项公式,解方程可得首项,进而得到所求通项公式.【详解】解:(1)等比数列的前项和为,且,,成等差数列,可得,显然不成立,即有,则,化为,解得;(2),即,可得,数列的通项公式为.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.18、(1)an=2×【解析】试题分析:(1)设出等比数列{an}的公比q,利用条件a1=4,a3﹣a4(4)数列{an+bn}是由一个等差数列和一个等比数列对应项相加得来的,所以可以采用拆项分组的方法,转化为等差数列、等比数列的前n项和问题来解决.试题解析:解:(1)设数列{an}的公比为q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合题意,舍去,故q=3.∴an=4×3n﹣1;(4)∵数列{bn}是首项b1=1,公差d=4的等差数列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考点:等差数列与等比数列.19、(1)或(2)(3)【解析】
(1)由题,由可得,进而求解即可;(2)由题意得到,进而求解即可;(3)由可得,整理可得关于的函数,进而求解即可【详解】(1)由题,,因为,所以,则,因为,所以或(2)由题,,因为,所以,当时,,因为是以为最小正周期的周期函数,所以(3)由(1),由题,,若,则,则,因为,所以【点睛】本题考查共线向量的坐标表示,考查垂直向量的坐标表示,考查解三角函数的不等式20、(1)证明见解析,(2)【解析】
(1)当时,结合可求得;当且时,利用可整理得,可证得数列为等比数列;根据等比数列通项公式可求得结果;(2)根据等比数列求和公式求得,代入可得;分别在为奇数和为偶数两种情况下根据恒成立,采用分离变量的方法得到的范围,综合可得结果.【详解】(1)当时,,又当且时,数列是以为首项,为公比的等比数列(2)由(1)知:当为奇数时,,即:恒成立当为偶数时,,即:综上所述,若对恒成立,则【点睛】本题考查等比数列知识的综合应用,涉及到利用与关系证明数列为等比数列、等比数列通项公式和求和公式的应用、恒成立问题的求解;本题解题关键是能够进行合理分类,分别在两种情况下求解参数的范围,最终取交集得到结果.21、(1)证明见解析(2)证明见解析【解析】
(1)根据线面垂直的判断定理得到平面;再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专利实施许可合同的收益分配
- 2024年企业股权转让取消合同样本
- 二零二四年度股权转让合同与保密规定3篇
- 2024年新能源汽车买卖合同性质与充电设施配套协议3篇
- 2024中介个人买卖合同范本
- 2024年工程实施阶段技术服务与劳务支持协议
- 2024至2030年中国打蜡桶行业投资前景及策略咨询研究报告
- 2024年度门窗安装工程环境污染责任合同3篇
- 2024至2030年中国富氧分析系统行业投资前景及策略咨询研究报告
- 2024至2030年中国头带行业投资前景及策略咨询研究报告
- 2025年山东省九年级数学中考模拟试卷试题(含答案详解)
- 2024年安全员之江苏省C2证(土建安全员)题库与答案
- 人教版生物八年级下册 第七单元 第二章 第五节 生物的变异教案
- 2024年吉林省长春市中考英语试卷(含答案与解析)
- 第一单元测试卷(单元测试)-2024-2025学年三年级上册数学人教版
- 工程造价咨询服务投标方案(技术方案)
- 公司车辆维修采购投标方案(技术标)
- 高职组全国职业院校技能大赛(体育活动设计与实施赛项)备赛试题库(含答案)
- 第7课 实践出真知-【中职专用】2024年中职思想政治《哲学与人生》金牌课件(高教版2023·基础模块)
- 癌症患者生活质量量表EORTC-QLQ-C30
- 急性脑卒中静脉溶栓知识考核与答案
评论
0/150
提交评论