版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建厦门双十中学2023-2024学年高一数学第二学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.42.已知,,,若点是所在平面内一点,且,则的最大值等于().A. B. C. D.3.向量,,,满足条件.,则A. B. C. D.4.一个几何体的三视图如图所示,则该几何体的体积为()A.10 B.20 C.30 D.605.如图所示的图形是弧三角形,又叫莱洛三角形,它是分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧得到的封闭图形.在此图形内随机取一点,则此点取自等边三角形内的概率是()A.32π-3 B.34π-236.已知函数f(x)满足:f(x)=-f(-x),且当x∈(-∞,0]时,成立,若则a,b,c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a7.为了得到函数的图像,可以将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位8.石臼是人类以各种石材制造的,用以砸、捣、研磨药材、食品等的生产工具,是由长方体挖去半球所得几何体,若某石臼的三视图如图所示(单位:dm),则其表面积(单位:dm2)为()A.132+8π B.168+4π C.132+12π D.168+16π9.在空间中,有三条不重合的直线,,,两个不重合的平面,,下列判断正确的是A.若∥,∥,则∥ B.若,,则∥C.若,∥,则 D.若,,∥,则∥10.已知两个球的表面积之比为,则这两个球的体积之比为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在上定义运算,则不等式的解集为_____.12.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用表示解下个圆环所需的移动最少次数,满足,且,则解下4个环所需的最少移动次数为_____.13.在△ABC中,若,则△ABC的形状是____.14.的化简结果是_________.15.函数的最小值为____________.16.已知等差数列,,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在直三棱柱中,,平面,D为AC的中点.(1)求证:平面;(2)求证:平面;(3)设E是上一点,试确定E的位置使平面平面BDE,并说明理由.18.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.19.在公差不为零的等差数列中,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,设数列的前项和,求证.20.等差数列的首项为23,公差为整数,且第6项为正数,从第7项起为负数.求此数列的公差及前项和.21.在中,,,,解三角形.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.2、A【解析】以为坐标原点,建立平面直角坐标系,如图所示,则,,,即,所以,,因此,因为,所以的最大值等于,当,即时取等号.考点:1、平面向量数量积;2、基本不等式.3、C【解析】向量,则,故解得.故答案为:C。4、B【解析】
由三视图可知几何体为四棱锥,利用四棱锥体积公式可求得结果.【详解】由三视图可知,该几何体为底面为长为,宽为的长方形,高为的四棱锥四棱锥体积本题正确选项:【点睛】本题考查根据三视图求解几何体体积的问题,关键是能够通过三视图将几何体还原为四棱锥,从而利用棱锥体积公式来进行求解.5、D【解析】
求出以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积,根据图形的性质,可知它的3倍减去2倍的等边三角形ABC【详解】设等边三角形ABC的边长为a,设以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积为S1,则S1=莱洛三角形面积为S,则S=3S在此图形内随机取一点,则此点取自等边三角形内的概率为P,P=S【点睛】本题考查了几何概型.解决本题的关键是正确求出莱洛三角形的面积.考查了运算能力.6、B【解析】
根据已知条件判断出函数的奇偶性,利用构造函数法,结合已知条件,判断出的单调性,结合的奇偶性比较出的大小关系.【详解】由于,所以为奇函数.构造函数,依题意,当时,,所以在区间上递减.由于,所以为偶函数,故在上递增..,.由于,所以.故选:B【点睛】本小题主要考查函数的奇偶性和单调性,考查构造函数法判断函数的单调性,考查比较大小的方法,属于中档题.7、D【解析】
根据三角函数的图象平移的原则,即左加右减,即可得答案.【详解】由,可以将函数图象向左平移个长度单位即可,故选:D.【点睛】本题考查三角函数的平移变换,求解时注意平移变换是针对自变量而言的,同时要注意是由谁变换到谁.8、B【解析】
利用三视图的直观图,画出几何体的直观图,然后求解表面积即可.【详解】几何体的直观图如图:几何体的表面积为:6×6×2+4×6×4﹣4π+2π×22=168+4π.故选:B.【点评】本题考查三视图及求解几何体的表面积,判断几何体的形状是解题的关键.9、C【解析】
根据空间中点、线、面的位置关系的判定与性质,逐项判定,即可求解,得到答案.【详解】由题意,A中,若∥,∥,则与可能平行、相交或异面,故A错误;B中,若,,则与c可能平行,也可能垂直,比如墙角,故B错误;C中,若,∥,则,正确;D中,若,,∥,则与可能平行或异面,故D错误;故选C.【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记空间中点、线、面的位置关系,以及线面位置关系的判定定理和性质定理是解答的关键,着重考查了推理与论证能力,属于中档试题.10、D【解析】
根据两个球的表面积之比求出半径之比,利用半径之比求出球的体积比.【详解】由题知,则.故选:D.【点睛】本题主要考查了球体的表面积公式和体积公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据定义运算,把化简得,求出其解集即可.【详解】因为,所以,即,得,解得:故答案为:.【点睛】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.12、7【解析】
利用的通项公式,依次求出,从而得到,即可得到答案。【详解】由于表示解下个圆环所需的移动最少次数,满足,且所以,,故,所以解下4个环所需的最少移动次数为7故答案为7.【点睛】本题考查数列的递推公式,属于基础题。13、钝角三角形【解析】
由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【点睛】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题14、【解析】原式,因为,所以,且,所以原式.15、【解析】
将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【点睛】本题考查了换元法,以及函数的单调性,是基础题。16、【解析】
利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【点睛】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见详解,(2)证明见详解,(3)当为的中点时,平面平面BDE,证明见详解【解析】
(1)连接与相交于,可得,结合线面平行的判定定理即可证明平面(2)先证明和即可得出平面,然后可得,又,即可证明平面(3)当为的中点时,平面平面BDE,由已知易得,结合平面可得平面,进而根据面面垂直的判定定理得到结论.【详解】(1)如图,连接与相交于,则为的中点连接,又为的中点所以,又平面,平面所以平面(2)因为,所以四边形为正方形所以又因为平面,平面所以所以平面,所以又在直三棱柱中,所以平面(3)当为的中点时,平面平面BDE因为分别是的中点所以,因为平面所以平面,又平面所以平面平面BDE【点睛】本题考查的是立体几何中线面平行和垂直的证明,要求我们要熟悉并掌握平行与垂直有关的判定定理和性质定理,在证明的过程中要注意步骤的完整.18、(1);(2)存在.【解析】
(1)由题得到的距离为,即得,解方程即得解;(2)设,,存在点满足题意,即,把韦达定理代入方程化简即得解.【详解】(1)因为圆,所以圆心坐标为,半径为2,因为,所以到的距离为,由点到直线的距离公式可得:,解得.(2)设,,则得,因为,所以,,设存在点满足题意,即,所以,因为,所以,所以,解得.所以存在点符合题意.【点睛】本题主要考查直线和圆的位置关系,考查直线和圆的探究性问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(Ⅰ)(Ⅱ)见解析【解析】
(Ⅰ)根据题意列出方程组,利用等差数列的通项公式化简求解即可;(Ⅱ)将的通项公式代入所给等式化简求出的通项公式,利用裂项相消法求出,由推出,由数列是递增数列推出.【详解】(Ⅰ)设等差数列的公差为(),因为,所以解得,所以.(Ⅱ),.因为,所以,又因为,所以数列是递增数列,于是.综上,.【点睛】本题考查等差数列的基本量的求解,裂项相消法求和,数列性质的应用,属于中档题.20、,【解析】
先设等差数列的公差为,根据第6项为正数,从第7项起为负数,得到求,再利用等差数列前项和公式求其.【详解】设等差数列的公差为,因为第6项为正数,从第7项起为负数,所以,即,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《平衡记分卡的应用》课件
- 《企业人力绩效管理》课件
- 2024-2025学年天津市红桥区高一上学期期中考试历史试卷(解析版)
- 单位管理制度分享汇编人事管理
- 单位管理制度分享大全人力资源管理十篇
- 单位管理制度范例选集人力资源管理篇
- 《磺达肝癸钠》课件
- 单位管理制度呈现大合集人力资源管理十篇
- 《市场营销学案例分》课件
- 《投资经济学》教学大纲
- 数学-湖南省天一大联考暨郴州市2025届高考高三第二次教学质量检测(郴州二检怀化统考)试题和答案
- 2024-2025学年人教版生物学八年级上册期末复习测试题(含答案)
- 施工现场环保要求措施
- 重症患者的营养支持
- 瓷砖店销售薪酬方案
- 小学体育课件教学
- 2024年事业单位招聘考试计算机基础知识复习题库及答案(共600题)
- 西京学院《机械制造技术基础》2022-2023学年第一学期期末试卷
- 2024新版《药品管理法》培训课件
- 【初中语文】2024-2025学年新统编版语文七年级上册期中专题12:议论文阅读
- 信息科技大单元教学设计之七年级第一单元探寻互联网新世界
评论
0/150
提交评论